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Abstract 
The estimation of the propagation model parameters is a main 
issue in location systems. In these systems, distance estimations 
are obtained from received signal strength information, which is 
extracted from received packets. The precision of these systems 
mainly depends on the proper propagation model selection. In 
this paper we introduce an algorithm based on Bayesian filtering 
techniques, which estimate the path-loss exponent of a log-
normal propagation model. This estimation is made dynamically 
and in real time. Therefore, it can track propagation model 
changes due to environmental changes. 
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1. Introduction 

Modeling signal propagation is an important topic in some 
applications such as location systems using Wireless 
Sensor Networks (WSN) [1]. The most typical information 
used to estimate mobile node locations in a WSN is the 
Received Signal Strength (RSS). This parameter is 
relatively easy to obtain in most WSN architectures like 
Wifi, ZigBee or Bluetooth. Location systems usually 
consider anchor nodes in fixed and known positions, 
which obtain RSS information and then estimate mobile 
node positions using the gathered information. 

 
It is well known that the power of the transmitted 

signal decays exponentially with distance, depending on 
the obstacles that surround or interpose between the 
transmitter and the receiver, environment characteristics 
(indoor, outdoor), etc. [2]. Moreover, RSS varies 
randomly depending on the environment characteristics. 
This variability can be interpreted by means of small and 
large-scale propagation models [2], which statistically 
represent changes in signal levels. 

 

In this paper, we use a classical path-loss propagation 
model, which is defined as: 
 
 
where  is the received signal power with distance , 

 is the power with reference distance ,  is the 
path-loss exponent and  represents the noise, by using a 
normally distributed random variable, with zero mean and 

 standard deviation. As shown, the model assumes log-
normal variations of the power with distance. Both  and 

 parameters are usually estimated using off-line linear 
regression analysis from real RSS data obtained at several 
distances in the environment. 
 

The path-loss  value typically varies between 1 and 
3 in indoor environments when there is a clear line-of-
sight (LOS) between a transmitter and a receiver, and it 
suddenly changes when the line-of-sight is blocked, that is, 
in the non line-of-sight (NLOS) case. Therefore, if the real 
path-loss ( ) value changes significantly with respect to 
the considered value in the location algorithm, the system 
accuracy will surely be lower or even null. 

 
In [3] we introduced a method to jointly estimate 

propagation model path-loss parameter and position, and 
we also showed the magnitude of the path-loss estimation 
error in the system accuracy. In the case of this paper, we 
do not jointly estimate position and path-loss parameter 
values. Instead, we are going to estimate the path-loss 
value in a continuous manner when node positions are 
known. The main advantage of this new approach is the 
possibility to track the  value in a real-valued range 
between two fixed limits, that is, without forcing the 
possible  values to a fixed set of discrete values, 
extracted from off-line measurements. Now, we can detect 
channel conditions in real time between two nodes with 
known positions. For instance, we could detect the loss of 
the LOS among the WSN anchor nodes after performing a 
cross measuring process, to obtain RSS information 
among themselves. With this information, we could take 
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some decisions about prioritization or calibration of some 
of the anchor nodes. 

  
Therefore, in order to achieve 

a reliable 
location 

system, it is mandatory to track propagation model 
changes by estimating its parameters frequently. 

 
Other different approaches can be found in the 

bibliography. To consider these changes in the 
propagation model, [4] and [5] consider transitions among 
different situations using a two node Markov model, 
which takes into account the probability of LOS between 
transmitter and receiver. In [6] they also identify LOS and 
NLOS channel conditions but they study it using an UWB 
network and time-of-arrival (TOA) approach applied to 
location systems. In [7] the unknown propagation model 
parameters are deduced from mathematical formulation, 
and in [8] parametric propagation models are proposed as 
a feasible way to track the channel. Our approach 
considers Bayesian filtering (particle filter) in order to 
estimate the path-loss parameter and, therefore, to detect 
channel conditions. 

 
This paper is organized as follows. Section 2 

introduces the propagation model problem, emphasizing 
possible changes that could take place in model 
parameters. Section 3 introduces our proposed algorithm 
based on particle filtering to estimate the path-loss 
parameter of a log-normal propagation model. Section 4 
shows the results obtained by simulation, which prove the 
advantages of the proposed algorithm. Finally, section 5 
summarizes the conclusions and future lines of work. 

2. Propagation model 

In this paper we consider the simplified log-normal 
propagation model defined in (1). Typically, this path-loss 
model is considered known a priori by assuming a perfect 
free-space channel, or extensive channel measurement and 
modeling is performed prior to system deployment. Such 
an assumption is an oversimplification in many 
applications and scenarios, where no extensive channel 
measurement is possible (i.e. hostile of inaccessible 
environments). In some other scenarios, such as indoor 
scenarios with moving people or devices, the channel 
characteristics tend to change considerably over a short 
period of time, mainly because of the loss of the line-of-
sight (LOS). In some outdoor scenarios, instead, the 
channel tend to change over a long period of time due to 
seasonal and accidental reasons [9]. 

 

Moreover, it is not guaranteed that all anchor nodes 
radiate in the same manner. Even with identical anchor 
hardware from the same manufacturer, depending on their 
antenna orientation and tolerance, pigtail lengths, etc., 
radiation could be different, producing different  and  
values. It is well known that the noise deviation increases  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Power loss versus distance in line-of-sight (LOS) case. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. Power loss versus distance in non line-of-sight (LOS) case. 

 
with the distance in indoor environments, due to multipath 
fading effects produced by obstacles. 

 
The problem is that usually the  value is assumed to 

be constant. However, this consideration is not valid for 
real environments when  can change suddenly due to the 
loss of LOS. It should only be considered constant for a 
certain period of time, and a reliable location algorithm 
needs to optimally accommodate and adapt to changing or 
unknown channel conditions. 

 
At least, path-loss  value should be estimated 

frequently, while it is enough to set an upper bound for , 
based on an estimated value obtained from off-line 
measurements. Note that, in order to guarantee good 
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results and the convergence of our algorithm, this  
assumed upper bound must be greater than any real value 
this parameter could take in real life. For this reason, we 
should always choose the worst observed  value, 
measured at the longest distance our location system can 
reach, or even a greater value. 

In the section 4 we are going to perform some 
experiments based on RSS values and channel conditions 
that usually appear in real indoor scenarios when using a 
real WSN. Figures 1 and 2 show the fitting curve of the 
log-normal propagation model in eq. 1 for the LOS and 
NLOS cases, respectively. These measurements were 
obtained at different distances between an anchor node 
and a mobile device, from 1 to 9 meters, in a  meter 
real scenario, using a Bluetooth sensor network. They 
were taken during four minutes at each position in order to 
obtain enough samples. For the NLOS case, we put an 
obstacle at 40 cm in front of the device to be located, 
blocking the line of sight. As shown,  and 

 for the LOS case whereas for NLOS case 
these parameters are  and . 

 
In some other scenarios these  and  values 

will be surely different when using the same WSN, and 
both also can vary depending on new obstacles and 
moving people. However, these path-loss values obtained 
from off-line measurements can give us a good idea of the 
kind of values that path-loss and  can take in real life. 
And assuming them as fixed within a location algorithm is 
always a bad idea, as shown in [3] in the CDF curves 
about the loss of accuracy. 

 
Therefore, it is desirable to have a system that could 

blindly track the real path-loss  value in real time, as the 
one introduced in this paper. 

3. Particle filter 

A particle filter is a Monte Carlo (MC) method for 
implementing a recursive Bayesian filter [10]. It is based 
on a set of random samples, named particles, associated to 
different weights that represent a probability density 
function (pdf). Basically, the objective is to construct the a 
posteriori pdf recursively, , where  is the 
state of the -th particle and  is an observation at a 
given instant . 

 
In this paper, the state of the -th particle is only 

composed by the channel parameter , which estimates the 
real path-loss exponent value. The  value is constant and 
an upper bound based on the worst deviation value 
observed from off-line measurements. After a random 
initialization of the  particle states and all their weights 
as , the algorithm performs several consecutive 

iterations. Each iteration is divided into the following 
steps: prediction, update, resampling and estimation. 

3.1 Prediction 

The prediction step computes the state of each particle 
with respect to the previous one, based on the dynamic 
model that indicates how the parameters must be updated. 
In our case,  is the  value for the -th particle, and the 
dynamic model is as simple as shown: 
 
 
 
 
 
where  is a Gaussian distribution with  mean and  
standard deviation,  is the interval of time between 
iterations (RSS samples),  models the variations of the 
dynamic model, and ,  are, respectively, the 
minimum and maximum values allowed for . Note that in 
the first iteration, the  values are updated with a Uniform 
distribution . Note that particles update 
their state in a random way.  

3.2 Update 

Each particle has an associated weight  directly 
related to  [11]. 
 
These weights are updated and normalized as follows: 

 

 
 
where  stands for the normalized weights. In the 
update process, the conditioned probability of the 
observations with respect to the state depends on the 
propagation model in (1). Taking into account the 
Gaussian noise, we obtain the following expression for the 
-th anchor node: 

 
 
 
 
where  is defined by the propagation model shown 
in (1), but applying the appropriate  parameter stored in 
the -th particle: 
 
 
 

3.3 Resampling 

To avoid degeneration problems in the particle system, 
new particles are generated when many of them have low 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 4, May 2010 
www.IJCSI.org 
 

 

4

weights after some iterations and the majority of the 
overall weights is accumulated in only a few particles [10], 
[12]. 

We consider a bootstrap approach, where the  
particles are replaced by using each -th sample replicate 
probability based on its  weight. Therefore, the 
strongest particles, that is, the particles with highest 
weights, will tend to be replicated while the weakest ones 
will tend to disappear. 

This resampling step is only performed when an 
effective number of samples, , is lower than a 
threshold : 

 
 

 

3.4 Estimation 

Finally, the parameter estimation is computed by means of 
a weighted sum of the state information from all the 
particles. It is computed as follows: 
 
 
 

4. Experimental results 

We have made some experiments to show the way our 
algorithm estimate the path-loss parameter, , in the 
environment described in section 2. We considered a 
particle filter with , ,  and a 
sampling period (time between algorithm interactions) 

 sec. The noisy simulated measurements were 
always generated using a  dBm, to simulate a 
harsh environment like the real scenario described in 
section 2. 

Figures 3 and 4 show the  value temporal evolution 
and the estimation achieved by the particle filter. We have 
considered a value of , for the LOS case, and a 
change to  in the middle of the experiment, to 
simulate the loss of the line-of-sight due to an obstacle. As 
it was shown in section 2, this kind of values is typical in 
some real indoor scenarios. The figures show how our 
algorithm tracks  dynamically when different 
assumptions in the  value were considered. In Figure 3 
we have considered a fixed value of , equal to the 
real value used in the simulation to generate the noisy 
measurements ( ). Note that the mean error of the  
estimation is very low ( ), which means that the 
estimation is centered on the real  value. In Figure 4 we 
show the effects of considering a wrong  parameter. The 
worst situation happens when  is lower that its real value. 
Nevertheless, greater values than the  obtains a 
correct path-loss estimation, even when much higher 

values are considered. The only effect in these cases is a 
lower speed of convergence in  estimation. Although it is 
not realistic, we even considered an over-sized value for 

, 27 dB greater than the real value, to show the effect in 
 estimation. 

Therefore, it is even better to choose a slightly higher 
value for  to guarantee that we never fall into the 
problematic case. 

As soon as we have a stable estimation of , after 
detecting that the variance of some consecutive  
estimations is very low, we can easily assume that the 
environment is not changing to much and that the path-
loss value is close to the mean of   over a certain 
interval of time. Instead of, if a high variance in the  
prediction is detected over a certain period of time, we can 
easily assume that the channel condition is changing and 
we can take the appropriate decisions over the anchor 
nodes. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3. Path-loss  estimation for a real path-loss  and the right 
. 

 
 
 
 
 
 
 
 
 
 
 

 

Fig 4. Path-loss  estimation for a real path-loss  and wrong . 

It is important to note that log-normal model (1) is 
suitable when there are not many multipath components. 
Therefore, in some real indoor scenarios this model can 
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not be applied and we should study other more complex 
models like Nakagami [1]. Authors are working in a 
solution, based on the results here described, for this kind 
of models. 

5. Conclusions 

In this paper we presented a particle filter algorithm for 
the estimation of the path-loss  parameter of a log-normal 
propagation model. The importance of good estimation of 
propagation model parameters to achieve good results in 
applications as, for instance, location systems, is well 
known. 

 
The introduced algorithm can dynamically estimate 

this parameter. In the experimental results section we have 
shown the effect of possible deviations in the estimation of 
this parameter in order to analyze the algorithm accuracy. 
We can conclude that the particle filter is very flexible and 
suitable to solve the raised problem. 

 
As a future line of work we should study the 

possibility of using other more complex propagation 
models, not as simple as the log-normal model used in this 
paper, to take into account multipath fading effects, very 
present in some real indoor scenarios. 
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