
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

47

Testing the relational Database
Mitu Dhull1 and Archana Sharma2

 1 Guru Nanak Khalsa Institute of Technology & Management Studies,

 Yamuna Nagar, Haryana,135001,INDIA

2 Guru Nanak Khalsa Institute of Technology & Management Studies,
 Yamuna Nagar, Haryana,135001,INDIA

Abstract

It is proposed that database systems be assessed for quality
using an approach based on stochastic software testing. This
approach requires an understanding of potential data errors
ranging from syntactic mistakes to undetectable dirty data. A
data error classification schema has been developed to
categorize the type of data errors that could be found during
testing. This classification schema provides a basis for
developing test cases inclusive of data, constraints, rules, and
supporting queries. A process is described whereby a database
system is tested using the test cases and data validation
requirements to generate feedback on data quality.
Keywords: Database Systems, Data Quality, Software Testing.

1. Introduction

For many of today’s operational software systems, the
quality of the data is of great concern. Much of the data
“mess” is hidden from end users by the filtering that
occurs when a report is generated (Gordon, 1996).
Unfortunately, the errors are obscured in the report that
then is erroneously assumed to be correct. This false
assumption means that inconsistent, missing, dirty, and
other data problems virtually go undetected.

To compound the problem, many legacy systems are
used without any mechanisms for identifying problems
associated with data representation, standards,
normalization, and redundancy, among others. Most
practitioners would agree that these systems provide a
wealth of historical information if the data could be
relied upon as having a relatively high quality. Though
manual techniques have been developed to “clean” the
data, there is still the issue of the prohibitive cost of
using such techniques.

The underlying issue is an organization’s ability to
assess data quality given the size and complexity of its
operational and legacy software systems (Hoxmeier,
1997). The multiplicity of data correctness problems

associated with the use of software systems makes it
virtually impossible to identify and fix each problem.

It is proposed that data be assessed for quality much the
same way that software applications are assessed. There
is much to be gained by applying the techniques used in
software development in dealing with system size and
complexity issues. Traditional testing techniques, for
example, are seldom used to test all possible components
of a system as was done a decade ago. It has been found
that this type of coverage-based testing is infeasible
given today’s systems; and as a result, more
sophisticated testing techniques have been developed.

One such technique, relies on stochastic testing to
provide valuable feedback on a software system’s
defects. This testing technique is based on sampling as a
means of quantifying the validity of the software system.
This paper describes initial work on the application of
this approach to obtain feedback on the quality of data.
The paper is organized as follows. Section 2 describes
the various data quality issues that may be addressed in a
testing environment. Section 3 presents the background
on the proposed testing environment. Section 4 describes
the testing process that would be used to uncover data
errors. Section 5 concludes the paper and addresses
future research opportunities.

2. Data Quality

The phrase “data quality” can be interpreted in many
different ways depending on the organization’s data
requirements (Orr, 1998). Data quality may range from
obvious syntactic mistakes to undetectable dirty data. It
is important to understand the types of data errors that
could occur in order to develop effective ways of
identifying them during the testing process. Table 1,
organized by the classification schema, lists the data
errors that potentially could cause major problems during

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
www.IJCSI.org

48

the use of a software system. Of course not all of these
data issues may be relevant during system use. However,
it is important to realize that there are many types of data
errors that could occur with or without actually causing a
system failure. Each of the data quality classes is briefly
described below.
Data consistency is concerned with ensuring that data
is represented “semantically the same way” within and
across tables in a database system..
Data completeness is associated with missing or
inaccessible data as a result of inadvertently storing
nulls, blanks, abbreviations, truncations, or partial data.
Data correctness is concerned with corrupt or wrong
data being stored; as well as, dirty data being shown to
the user under the guise of valid data.
Data comprehension problems may be inherited
from legacy systems that contain cryptic, obsolete or
unknown data due to changes in the real world
applications

Factor: Description: Example:

Data Consistency Issues:

Varying Data
Definitions

The data type
and length for a
particular
attribute may
vary in tables
though the
semantic
definition is the
same.

Social security
number may be
defined as:
Number (9) in
one table and
Varchar2(11) in
another table.

Varying Data
Codes & Values

The data
representation of
the same
attribute may
vary within and
across tables.

A flag
representing yes
or no may be
defined in many
ways.

Misuse of
Integrity
Constraints

When referential
integrity
constraints are
misused, foreign
key values may
be left
“dangling” or
inadvertently
deleted.

An employee
record is deleted
but his/her
dependent
records are not
deleted.

Nulls

Nulls may be
ignored when
joining tables or
doing searches
on the column.

The supervisor
(A) has been
entered as a null
value for an
employee (B).
would not list
Jones.

Data Completeness Issues:
Missing data

Data elements
are missing
because of a
lack of
integrity
constraints or
nulls are
inadvertently
not updated.

A shipment’s date
of estimated arrival
is null thus
impacting an
assessment of
variances in
estimated/actual
arrival data.

Inaccessible Data

Inaccessible
record due to
missing or
redundant
unique
identifier
value.

Customer numbers
are used to identify
a customer
record.The
customer ID
(45656) identifies
more than one
customer.

Missing Integrity
Constraints

Missing
constraints can
cause data
errors due to
nulls,
nonuniqueness
, or missing
relationships.

Part records with a
supplier identifier
exist in the
database but cannot
be matched to an
existing supplier.

Data Correctness Issues:
Loss
Projection

Tables that are
joined over
nonkey
attributes will
produce
nonexistent data
that is shown to
the user.

Lisa Evans works
in the LA office
in the Accounting
department.
When a report is
generated, it
shows her
working in
Marketing and
Accounting.

Incorrect Data
Values

Data that is
misspelled or
inaccurately
recorded.

123 Maple Street
is recorded with a
spelling mistake
and a street
abbreviation (123
Mapel St)

49

Disabled
Integrity
Constraints

Null, nonunique,
or out of range
data may be
stored when the
integrity
constraints are
disabled.

The primary key
constraint is
disabled during
an import
function. Data is
entered into the
existing data with
null unique
identifiers.

Misuse of
Integrity
Constraints

Check, not null,
or foreign key
constraints are
inappropriate or
too restrictive.

Check constraint
only allows
hardcoded values
of “C”, “A”, “X”,
But a new code
“B” cannot be
entered.

Table1. Data Quality Factors

What is needed is a means of identifying these data
errors in order improve and maintain the quality of a
software system. We propose the use of a software
testing technique to assist in uncovering data errors
while validating system behavior.

3. Testing

The sampling used for stochastic testing of a software
system is an important aspect of this work because of its
representation of the real world population. With a
sufficiently large and unbiased sample, feedback can be
obtained not only on the software reliability but also on
the quality of the data. Expensive, exhaustive testing
techniques can be replaced with sampling to identify
problem areas in metadata (database objects) and data.
There are several advantages to using this approach in
assessing data quality. There is a certain statistical
confidence in the test results based on sample size. As
the sample size increases so does the confidence in the
test results as being representative of the whole
population (refer to Whittaker & Poore (1993) for an in-
depth discussion). In addition, those components of the
system that are used most often or are of greater interest
than other components would appear in a significant
number of test cases as testing is based on usage.
The testing process that provides a basis for this work is
presented in Table 2.

Process

Step

Explanation Artifacts

Identify
quality
factor(s) to be
assessed.

The quality factors drive
the data validation criteria
necessary for effective
testing.

 Quality factors.

Model the
system
component.

The set of states
representing the
component’s behavior is
constructed in a directed
graph. Each arc is
assigned a probability
between 0 and 1
(inclusive). The sum of
the exit arcs probabilities
from each state = 1.

Behavior model.

Determine
sample size.

Sample size is based on
statistical confidence and
reliability.

Sample size.

Develop test
sequences.

Test sequences are
generated based on usage
probabilities.

Test sequences.

Develop test
data &
data
validation
criteria.

Test data is generated for
each sequence inclusive of
quality factors & data
validation criteria.

Test cases with
validation
criteria.

Perform
testing and
capture
results.

The test cases are
executed & defects/data
errors logged.

Data may be
gathered before
and after test
case execution
based on
validation
requirements.
Audit log, data
error report, &
defect log.

Table 2: General description of testing process

Figure 1 depicts the testing environment whereby the
inputs, process, and outputs provide the basis for
obtaining feedback on the quality of the data. The inputs
of this testing environment would include a sample of
test cases with database transactions of reads, updates,
deletions, and insertions. Inputs also include the selected
data quality factors with associated validation criteria,
which become the basis for analyzing the test results.
The behavior model, shown in the middle of the figure,
represents the system’s states and usage probabilities.
The usage probability associated with each arc is based
on past experience, extracted from audit logs, or
randomly generated.
The outputs produced by the testing activities would
include the number of defects (as defined in the
traditional sense of testing), database audit logs that
would contain old and new data values, and a data error
report. The output requirements are determined by the

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
www.IJCSI.org

50

validation criteria as specified as part of the inputs of the
testing environment. Based on the validation criteria, the
audit log may be updated and the data error report may
contain the output of SQL queries that were executed to
provide additional information about the quality of the
data.

Figure1:The testing environment

4. The Project Update Application

A behavior model (Figure 2a) represents a project update
application (Figure 2b), which is part of a web-based
project management tool (Becker & Ladino, 1999). The
arcs in the model are labeled with probabilities of use to
represent the real-world activities associated with project
updates. The model shows that ninety percent of all
project updates are successful in that project records
were found and data modified. This is reflected as the
commit state that ensures changes are made permanently
to the database system. The rollback state, which has a
ten-percent probability of occurrence, is executed when
the update fails thus ensuring that any temporary
changes are not permanently recorded in the database
system.

 Figure 2: Graph Containing Components of the Update Project
Application

 .02

 .98

 .04

 .06 .96

 .8

 .10
 .06
 .10

 .2

 .1

 .4

Inputs:
Data Quality

Factors

Data
validation

criteria

Sample Size
& Test Cases

 2 6

 4

 1
 8

Outputs:

Defects

Audit Log

Data Error
Report

insert
(b)

start
(a)

done
(c)

read
(d) Display

rollback
message

display
screen

(html)

format
dates

Display
error

message

update
project
record

MAIN

Display
commit

message

51

* This procedure updates the table PROJECTS *
***/
PROCEDURE u_projects
(p_id IN projects.id%TYPE,
p_name IN projects.name%TYPE,
p_manager IN projects.manager%TYPE,
p_sdate IN owa_util.dateType,
p_edate IN owa_util.dateType)
IS
pr_edate DATE;
pr_sdate DATE;
/*web-based application */
BEGIN
htp.htmlOpen;
htp.bodyOpen;
pr_sdate := owa_util.todate(p_sdate);
pr_edate := owa_util.todate(p_edate);
/* SQL component */
UPDATE projects
SET name = p_name,
mgr_name = p_manager,
start_date = pr_sdate,
end_date = pr_edate
WHERE id = p_id;
COMMIT;
/* Error Component for the Rollback */
END u_projects;
Figure 3: Part of the Code Design for Update Project Application

This example exhibits such simple behavior that one
would think there was little opportunity for data
problems to occur as the unique identifier either matches
a record or is not found in the database. Even in this
simple example, however, there is the potential for a
range of data errors. These data errors would not
typically be found during traditional means of software
testing, as a defect would constitute a system failure.
System failure, for example, could occur during the
execution of the html statements, date function calls, or
the SQL. The testing results would uncover defects in
the execution of the code but not necessarily data
corruption or integrity problems. To illustrate this point,
Table 3 identifies potential data problems associated
with the update project application that would not have
resulted in a system defect.

Transaction Problem

The SQL syntax doesn’t deal with upper or lower case data
resulting in “no record found” when the record should have
been found (e.g., ‘P123’ <> ‘p123’).
Data Problems:

The record identifier is not unique. This could be the result of
a missing integrity constraint (unique or primary key) or
syntax (both ‘p123’ and ‘P123’ are in the database as separate
records).
The manager’s name is a long text field. This may cause data
problems in terms of the ordering of the surname and first and
last names (‘Jones, Sally, Ms.’or ‘Ms. Sally Jones’), missing
data elements (e.g., no surname is included), and syntactic
(spelling) mistakes.
The manager’s id must match an existing employee social
security number to maintain referential integrity. A missing
integrity constraint would not ensure this matching occurs
thus allowing a manager to exist without a matching
employee record.

Table 3 : Potential Transaction and Data Errors That May Go
Undetected.

In order to follow the testing process that has been
proposed, each test case must include both data and data
validation criteria in order to identify system defects and
data errors. Test cases are selected based on the
probabilities of use as represented in the behavior model.
We start by identifying test sequences that reflect how
the system is used. For our example, test sequences are
illustrated by the following:
Sequence 1: display screen(A), get today’s date(B),
update project(C), commit(D), quit(F).
 Sequence 2: display screen(A), get today’s date(B),
update project(C), rollback(E), update project(C),
commit(D), quit(F).
Sequence 3: display screen(A), get today’s date(B),
update project(C), rollback(E), quit(F).
Next, the data validation criteria are added based on
selected data quality factor(s). The quality factor under
investigation is missing integrity constraints as part of a
completeness check. The data validation criteria will
include both primary key and foreign key checks to
ensure that as projects are updated data integrity remains
intact. In this case, the foreign key constraint is on
manager’s id (social security number), which means that
a manager cannot be assigned to a project unless he or
she exists as an employee in the Employee table.
The data validation criteria are expressed as a set of rules
that would be used to determine whether there are data
errors resulting from the execution of the test case. Table
4 shows several data validation criteria associated with
the first test sequence (A,B,C,D,F). These rules and their
links to data quality factors would reside as physical data
in the database.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 5, May 2010
www.IJCSI.org

52

Table 4: Illustration of Data Validation Criteria for Primary Key
Integrity Constraint

Depending on the rule, we may need to track old and
new data values in order to determine whether a data
error has occurred. This requirement is also stored with
the rule and becomes part of the information associated
with each test sequence. When the rule specifies that old
and new data values need to be stored, an audit log entry
is made during testing activities. In our example, the
primary key integrity validation would not require an
audit log entry because we are only concerned with
finding one record matching on the primary key. For
other quality factors, however, it would be imperative to
have old and new data values to ensure that data errors
have not occurred.

5. Conclusion and Future Work

It is proposed in this paper that stochastic testing
techniques be applied to the testing of data quality in
software systems. This type of testing allows for a
sampling of software behavior that would represent real
world use of the system. In this respect, the software
applications that are used most often would have a
higher representation in the test cases generated.
Traditional testing of software systems identifies defects
in terms of the successful execution of a particular test
case. The problem with this approach when searching for
data errors is that the execution path may be completed
successfully while data errors go undetected. What is
needed is a means of testing software applications in
terms of defects and data errors.
It is important to develop automated means (e.g., SQL
queries) that would supplement each test case execution.
An automated environment is currently being studied to
support the rule-based validation criteria. Several

operational database systems have been analyzed using
this approach in order to initiate the development of a
common set of validation criteria rules associated with
quality factors.

6. References

[1] Becker, S. and Ladino, D. (1999). “A Technical
Infrastructure for Process Support,” Software Process
Improvement: Concepts and Practices, IDEA Group
Publishing, Hershey, PA.
[2] Date, C.J. (1995). Introduction to Database Systems,
Addison_Wesley Publishing, Reading, MA.
[3] Gordon, K.I. (1996). “The Why of Data Standards –
Do You Really Know Your Data,”
[4] Greenfield, L. (1997). “An (informal) Taxonomy of
Data Warehouse Data Errors,”
[5] Fox, C., Levitin, A. & Redman, T. (1994). “The
Notion of Data and Its Quality Dimensions,” Information
Processing and Management, Vol. 30, No. 1.
[6] Hoxmeier, J. (1997). “A Framework for Assessing
Database Management,” Proceedings of the ER’97
Workshop on Behavioral Models and Design
Transformations: Issues and Opportunities in Conceptual
Modeling, Los Angeles, CA.
[7] Inmon, W. H. and Hackathorn, R.D. (1994). Using
the Data Warehouse. Wiley & Sons NY.
[8] Orr, K. (1998). “Data Quality and Systems Theory,”
Communications of the ACM, Vol. 41,

Rule: Validation

1. One and only
one record found
by project_id

One record returned. If more than one
record, then update error report. A
query is executed to check database
objects for disabled primary key
constraint.

2. When no
records found,
execute “like”
query.

No records were found. A query is
executed to search for similar text
patterns matched against the p_id. Error
report is updated with similar p_ids.

3. When no
records found,
execute query to
search for missing
values (nulls).

No records were found. A query is
executed to determine if there are
missing records identifiers. Error report
is updated with existence or
nonexistence of nulls.

