
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

41

A Nonblocking Coordinated Checkpointing
Algorithm for Mobile Computing Systems

Rachit Garg1, Praveen Kumar2

1Singhania University, Department of Computer Science & Engineering, Pacheri Bari (Rajasthan), India

2Meerut Institute of Engineering & Technology, Department of Computer Science & Engineering, Meerut (INDIA)-125005

Abstract: A checkpoint algorithm for mobile computing systems
needs to handle many new issues like: mobility, low bandwidth of
wireless channels, lack of stable storage on mobile nodes,
disconnections, limited battery power and high failure rate of
mobile nodes. These issues make traditional checkpointing
techniques unsuitable for such environments. Minimum-process
coordinated checkpointing is an attractive approach to introduce
fault tolerance in mobile distributed systems transparently. This
approach is domino-free, requires at most two checkpoints of a
process on stable storage, and forces only a minimum number of
processes to checkpoint. But, it requires extra synchronization
messages, blocking of the underlying computation or taking some
useless checkpoints. In this paper, we propose a nonblocking
coordinated checkpointing algorithm for mobile computing
systems, which requires only a minimum number of processes to
take permanent checkpoints. We reduce the message complexity as
compared to the Cao-Singhal algorithm [4], while keeping the
number of useless checkpoints unchanged. We also address the
related issues like: failures during checkpointing, disconnections,
concurrent initiations of the algorithm and maintaining exact
dependencies among processes. Finally, the paper presents an
optimization technique, which significantly reduces the number of
useless checkpoints at the cost of minor increase in the message
complexity. In coordinated checkpointing, if a single process fails
to take its tentative checkpoint; all the checkpoint effort is aborted.
We try to reduce this effort by taking soft checkpoints in the first
phase at Mobile Hosts.

Keywords: Mobile computing, fault tolerance, distributed
systems, checkpointing, and minimum-process coordinated
checkpointing.

1. Introduction

Mobile Hosts (MHs) are increasingly becoming common in
distributed systems due to their availability, cost, and mobile
connectivity. An MH is a computer that may retain its connectivity
with the rest of the distributed system through a wireless network
while on move. An MH communicates with the other nodes of the
distributed system via a special node called mobile support station
(MSS). A “cell” is a geographical area around an MSS in which
it can support an MH. An MSS has both wired and wireless links
and it acts as an interface between the static network and a part of
the mobile network. Static nodes are connected by a high speed
wired network [1].
 A checkpoint is a local state of a process saved on the stable
storage. In a distributed system, since the processes in the system
do not share memory, a global state of the system is defined as a set
of local states, one from each process. The state of channels
corresponding to a global state is the set of messages sent but not
yet received. A global state is said to be “consistent” if it contains
no orphan message; i.e., a message whose receive event is recorded,

but its send event is lost [5]. To recover from a failure, the system
restarts its execution from the previous consistent global state saved
on the stable storage during fault-free execution. This saves all the
computation done up to the last checkpointed state and only the
computation done thereafter needs to be redone.
 In coordinated or synchronous checkpointing, processes take
checkpoints in such a manner that the resulting global state is
consistent. Mostly it follows the two-phase commit structure [2],
[5], [6], [7], [10], [15]. In the first phase, processes take tentative
checkpoints, and in the second phase, these are made permanent.
The main advantage is that only one permanent checkpoint and at
most one tentative checkpoint is required to be stored. In the case of
a fault, processes rollback to the last checkpointed state [6]. The
Chandy-Lamport [5] algorithm is the earliest non-blocking all-
process coordinated checkpointing algorithm.
 The existence of mobile nodes in a distributed system introduces
new issues that need proper handling while designing a
checkpointing algorithm for such systems [1], [4], [14], [16]. These
issues are mobility, disconnections, finite power source, vulnerable
to physical damage, lack of stable storage etc. Prakash and Singhal
[14] proposed a nonblocking minimum-process coordinated
checkpointing protocol for mobile distributed systems. They
proposed that a good checkpointing protocol for mobile distributed
systems should have low overheads on MHs and wireless channels;
and it should avoid awakening of an MH in doze mode operation.
The disconnection of an MH should not lead to infinite wait state.
The algorithm should be non-intrusive and it should force minimum
number of processes to take their local checkpoints. In minimum-
process coordinated checkpointing algorithms, some blocking of
the processes takes place [3], [10], [11],[22] or some useless
checkpoints are taken [4], [15].
 In minimum-process coordinated checkpointing algorithms, a
process Pi takes its checkpoint only if it a member of the minimum
set (a subset of interacting process). A process Pi is in the minimum
set only if the checkpoint initiator process is transitively dependent
upon it. Pj is directly dependent upon Pk only if there exists m such
that Pj receives m from Pk in the current checkpointing interval [CI]
and Pk has not taken its permanent checkpoint after sending m. The
ith CI of a process denotes all the computation performed between
its ith and (i+1)th checkpoint, including the ith checkpoint but not the
(i+1)th checkpoint.
 Cao and Singhal [4] achieved non-intrusiveness in the minimum-
process algorithm by introducing the concept of mutable
checkpoints. Kumar and Kumar [21] proposed a minimum-process
coordinated checkpointing algorithm for mobile distributed
systems, where the number of useless checkpoints and the blocking
of processes are reduced using a probabilistic approach. Singh and
Cabillic [20] proposed a minimum-process non-intrusive
coordinated checkpointing protocol for deterministic mobile
systems, where anti-messages of selective messages are logged
during checkpointing. Higaki and Takizawa [8], and Kumar et al
[17] proposed hybrid checkpointing protocols where MHs

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

42

checkpoint independently and MSSs checkpoint synchronously.
Neves et al. [13] gave a time based loosely synchronized
coordinated checkpointing protocol that removes the overhead of
synchronization and piggybacks integer csn (checkpoint sequence
number). Pradhan et al [19] had shown that asynchronous
checkpointing with message logging is quite effective for
checkpointing mobile systems.
 In the present study, we propose a nonblocking coordinated
checkpointing algorithm for mobile computing systems, which
requires only a minimum number of processes to take permanent
checkpoints. We reduce the message complexity as compared to
[4], while keeping the number of useless checkpoints unchanged.

2. Previous Coordinated Checkpointing
Algorithm

Cao and Singhal [4] achieved non-intrusiveness in minimum-
process algorithm by introducing the concept of mutable
checkpoints. In this algorithm, checkpoint initiator process (say Pi)
sends the checkpoint request to Pj only if Pi receives m from Pj in
the current CI. Pi also piggybacks csni[j] with the checkpoint
request. Pj inherits the request only if old_csnj ≤csni[j]. old_csnj is
the csn of the current tentative or permanent checkpoint. If Pj

inherits request, it acts as follows: i) Pj takes its tentative checkpoint
and propagates the request to Pk only if Pj receives m from Pk in the
current CI; ii) and if Pj knows that some other process has already
sent the checkpoint request to Pk and Pk is not going to inherit the
current checkpoint request, then Pj does not send the checkpoint
request to Pk. The decision above in point (ii) is taken on the basis
of data structure, MR[], received along with the checkpoint request.
If Pj does not inherit the request, it simply ignores it. This process
is continued till the checkpoint request reaches all the processes on
which the initiator process transitively depends. Suppose, during
checkpointing process, P1 receives m from P2. P1 takes its mutable
checkpoint before processing m only if the following conditions
are met: (i) P2 has taken some checkpoint in the current initiation
before sending m (ii) P1 has not taken any checkpoint in the current
initiation (iii) P1 has sent at least one message since its last
permanent checkpoint. If P1 takes mutable checkpoint and is not a
member of the minimum set, it discards its checkpoint on commit.
We find the following observations in [4]:
(i) In this algorithm, multiple checkpoint requests may be sent
between two MSSs as follows. Let us consider mobile distributed
systems with two MSSs, say MSS1 and MSS2; where P1 and P2 are
in the cell of MSS1 and P3 and P4 are in the cell of MSS2. Suppose,
P1 initiates checkpointing; and P2 and P3 are in its dependency set;
i.e., P1 is directly dependent upon P2 and P3. Similarly, P4 is in the
dependency set of P2. In the existing protocol, P1 sends checkpoint
request to P2 and P3. After this, P2 sends checkpoint request to P4. In
this way two messages are sent from MSS1 to MSS2. Although,
there should be sent only one message. There is sufficient
information at MSS1 that P1 is transitively dependent upon P3 and
P4.
(ii) When Pi sends the checkpoint request to Pj, following
scenarios are possible: (a) Pi knows that some other process has
already sent the checkpoint request to Pj (b) Pj is not in the
minimum set (c) Pj discards the checkpoint request and Pj actually
belongs to the minimum set.
(iii) When Pi sends a checkpoint request to Pj, it also piggybacks
csni[j] and a huge data structure MR[].
(iv) Ri[] maintains direct dependencies of Pi. In this algorithm, it is
possible that Ri[j] equals 1 and Pi is not directly dependent upon Pj
for the current CI. For exactness, it is required that Ri[j]=1 only if Pi

is directly dependent upon Pj. Hence, exact dependencies among
processes are not maintained.

 The useless checkpoint requests in above point [ii] are sent,
because, exact dependencies among processes are not maintained as
mentioned in point [iv]. The useless checkpoint requests are taken
care of by sending the sufficient information along with the
checkpoint requests in point [iii].
 The useless checkpoint requests and the extra piggybacked
information onto checkpoint requests increase the message
complexity of the algorithm [4].

3. The Proposed Checkpointing Algorithm

 3.1 System Model
The system model is similar to [4], [14]. A mobile computing
system consists of a large number of MHs and relatively fewer
MSSs. The distributed computation we consider consists of n
spatially separated sequential processes denoted by P0, P1, ..., Pn-1,
running on fail-stop MHs or on MSSs. Each MH or MSS has one
process running on it. The processes do no share common memory
or common clock. Message passing is the only way for the
processes to communicate with each other. Each process progresses
at its own speed and messages are exchanged through reliable
channels, whose transmission delays are finite but arbitrary. The
messages generated by the underlying computation are referred to
as computation messages or simply messages, and are denoted by
mi or m. We assume the processes to be non-deterministic.

 3.2 Data Structures
Here, we describe the data structures used in the checkpointing
protocol. A process that initiates checkpointing, is called initiator
process and its local MSS is called initiator MSS. If the initiator
process is on an MSS, then the MSS is the initiator MSS. Data
structures are initialized on the completion of a checkpointing
process if not mentioned explicitly. We use the term potential
checkpoint request to an MSS, if at least one process takes a
checkpoint in its cell to this request. Sometimes, a process is forced
to take its checkpoint before processing a particular message, called
mutable checkpoint [4]; and for an MH, it is preferably stored on its
local disk.
i) Each process Pi maintains the following data structures, which

are preferably stored on local MSS:

own_csni: three bits nean integer; on switching c_statei:
own_csni=csn[i]+1; on commit or abort : after
 updating csn[],
own_csni=csn[i]; csn[] and c_state are described
later;

mutablei : a flag that I a a flag; set to ‘1’ on mutable
checkpoint;

ddvi[]: a bit vector of size n; ddvi[j] =1 implies Pi is
directly dependent upon Pj for the current CI;
ddvi[j] is set to ‘1’ only if Pi processes m
received from Pj such that m.own_csn  csn[j];
m.own_csn is the own_csn at Pj at the time of
sending m and csn[j] is Pj’s recent permanent
checkpoint’s csn; initially for Pi, k, ddvi[k]=0
and ddvi[i]=1; for MHi it is kept at local MSS;
maintenance of ddv[] is described in Section
3.4;

c_statei a flag; set to ‘1’ on tentative or mutable
checkpoint or on receiving m from Pj s.t.
((c_statei= =0)  (m.c_state = = 1)  (!sendi));
m.c_state is the c_state of Pj at the time of
sending m;

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

43

sendi a flag; initialized to ‘0’ on permanent
checkpoint; set to ‘1’ when Pi sends first
message after permanent checkpoint;

ii) Initiator MSS (any MSS can be initiator MSS) maintains the

following Data structures:

minset[] a bit vector of size n; minset[k]=1 implies Pk

belongs to the minimum set; initially, minset[]
(subset of the minimum set) is computed by using
ddv vectors maintained at the initiator MSS [Refer
Section 3.3]; on receiving response() from some
MSS: minset=minset np_minset; after receiving
responses from all relevant processes, minset[]
contains the exact minimum set; ‘’, is a operator
for bitwise logical OR; np_minset is described
later;

R[]: a bit vector of length n; R[i]=1 implies Pi has
taken its tentative checkpoint;

timer1: a flag; initialized to ‘0’ when the timer is set; set
to ‘1’ when maximum allowable time for
collecting coordinated checkpoint expires;

iii) Each MSS (including initiator MSS) maintains the following

data structures:

D[]: a bit vector of length n; D[i]=1 implies Pi is
running in the cell of MSS; it also includes the
disconnected MHs supported by this MSS;

EE[]: a bit vector of length n; EE[i] is set to ‘1’ if Pi is
in its cell and it has taken its tentativeint.
tentative checkpoint;

E[]: a bit vector of length n; E[i] is set to ‘1’ if
checkpoint request is sent to Pi and Pi is
in the cell;

s_bit: a flag; set to ‘1’ when some relevant process in
its cell fails to take its tentative
checkpoint;

Pin: initiator process identification;

MSSin initiator MSS identification;

own_csnin own_csn of initiator process;

csn[] an array of length n for n processes; csn[j]
denotes the Pj’s most recent committed
checkpoint’s csn; on commit, for all j, (if minset
[j]==1) csn[j]++; minset[] is the exact minimum
set received along with the commit request;
csn[] is not updated on tentative or mutable
checkpoints; we maintain one csn array for each
MSS and not for each process;

tnp_minset a bit vector of length n; it contains the new
processes found for the minimum set while
executing a potential checkpoint request [Refer
Section 3.3];

np_minset a bit vector of length n; it contains all new
processes found for the minimum set at the
MSS; on each potential checkpoint request: if
(tnp_minset≠) np_minset= np_minset
tnp_minset;

tminset a bit vector of length n; tminset[k]=1 implies Pk
belongs to the minimum set; it maintains the
local knowledge of the minimum set; on
receiving tminset, minset, tnp_minset along with
c_req (checkpoint request): tminset=tminset
c_req.tminset, tminset=tminset
c_req.minset, tminset=tminset

c_req.tnp_minset; on each potential
checkpoint request, tnp_minset is computed, if
(tnp_minset≠) tminset= tminset tnp_minset;

chkpt a flag; set to 1 when the MSS learns that some
checkpointing process is going on;

c_req a checkpoint request; when MSSin sends c_req
to MSSp, it piggybacks the data structures: Pin,
MSSin, own_csnin, MSSp, minset; any other
MSS piggybacks tminset, tnp_minset in place of
minset;

 3.3 Computation of minset or tnp_minset:
Let D be the bit dependency matrix of n*n, where jth row denote the
ddv[] of Pj. For making dependency matrix at an MSS, if a process,
say Pk, is not in the cell of MSS, then its initial ddv[] vector is
assumed. Initial ddv[] of Pk is: i, ddv[i]=0; ddv[k]=1.

Computation of minset[]: Let Pi be the initiator
process.
 A= ddvi[]; minset=ddvi[]; A=A×D;
 While (A≠minset[]) do { minset=A; A= A×D;}

Computation of tnp_minset:
 A=tminset; B=tminset; B=B×D;
 While (A≠B) do { A=B; B= B×D;}
 Initialize tnp_minset;
 for(i=0;i<n;i++)
 If(A[i]==1tminset[i]==0) tnp_minset[i]=1;
 MSSin initially computes the minset[] on the basis of
dependencies of local processes; the minset[] thus computed is
based on the direct dependencies of the local processes and it is a
subset of the minimum set. Suppose, MSSin sends c_req to MSSs
along with minset[] and some process (say Pk) is found at MSSs,
which takes the checkpoint to this c_req. All MSSs maintains the
processes of minimum set to the best of their knowledge in tminset.
It is required to minimize duplicate checkpoint requests. Suppose,
there exists some process (say Pl) such that Pk is directly dependent
upon Pl and Pl is not in the tminset (maintained by MSSs), then
MSSs sends c_req to Pl. The new processes found for the minimum
set while executing a potential checkpoint request at an MSS are
stored in tnp_minset. For example, in the present case:
tnp_minset={Pl}. MSSs sends the c_req to Pl; Pl is stored in
np_minset and it is removed from the tnp_minset. In this way,
np_minset at an MSS maintains all new processes found for the
minimum set while executing c_req from MSSin or other MSSs.
When an MSS finds that all the local processes, which were asked
to take checkpoints, have taken their checkpoints, it sends the
response to the MSSin along with np_minset; so that MSSin may
update its knowledge about minimum set and wait for the new
processes before sending commit. In this way, MSSin sends commit
only if all the processes in the minimum set have taken their
tentative checkpoints.

3.4 Maintenance of dependencies among processes
 Suppose, a process Pi receives a message m from Pj, where
m.own_csn is the own_csn at Pj at the time of sending m. When Pi
sets c_state, it maintains two temporary bit dependency vectors,
ddv1[] and ddv2[], of length n. These are initialized to all zeroes.
The dependencies created during checkpointing process are
temporarily maintained in these vectors. ddv1[] maintains
dependencies at Pi such that Pj has taken its tentative checkpoint
before sending m. These dependencies persist on completion of the
checkpointing process in all cases. ddv2[] maintains dependencies
at Pi such that Pj has not taken its tentative checkpoint before

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

44

sending m. These dependencies persist on completion of the
checkpointing process only if Pj is not included in the minset[].
Algorithm executed at Pi on the receipt of m from Pj:
if (m.own_csn<=csn[j])
 receive (m);
else if ((c_statei= =0)  (m.own_csn = = csn[j])) ddv[j]=1;
else if ((c_statei= =0)  (m.c_state = = 1)  (sendi))
 {Pi takes its mutable checkpoint before processing m;
 own_csni++; c_statei=1; mutablei=1; ddv1[j]=1;}
else if ((c_statei= =0)  (m.c_state = = 1)  (!sendi))
 {own_csni++; c_statei=1; ddv1[j]=1;}
else if ((c_statei= =1)  (m.own_csn = = csn[j])) ddv2[j]=1;
else if ((c_statei= =1)  (m.own_csn > csn[j])) ddv1[j]=1;
On Commit or Abort, ddv vector of a process Pi is updated as
follows:
Case 1. The checkpointing process is aborted.
 for (k= 0; k<n; k++)
{ if (ddv1[k]==1  ddv2[k]==1) ddv[k]=1;}//all dependencies
persist
Case 2. The checkpointing process is committed and Pi is in the
minimum set.
 for (k=0; k<n; k++)
 { ddv[k]=0; //previos dependencies of Pi are initialized
 if (ddv1[k]==1) ddv[k]=1;
 if (ddv2[k]==1  minset[k]==0) ddv[k]=1;}
 ddv[i]=1;
Case 3. The checkpointing process is committed and Pi is not in the
minimum set.
 for (k= 0; k<n; k++)
 { if (ddv[k]==1  minset[k]==1) ddv[k]=0;
 if (ddv1[k]==1) ddv[k]=1;
 if (ddv2[k]==1  minset[k]==0) ddv[k]=1;}

Suppose, Pi receives mk from Pj, and becomes dependent upon it. If
Pj commits its checkpoint such that send (mk) is recorded in the
checkpoint of Pj, then ddvi[j] will be set to ‘0’. Otherwise, ddvi[j]
will remain unchanged. Hence, if all the processes take
checkpoints, then all the previous dependencies will be initialized;
and on the contrary, if the whole of the checkpointing procedure is
aborted, then all the previous dependencies will persist.

3.5 Basic Idea
The proposed checkpointing algorithm is based on keeping track of
direct dependencies of processes. The initiator MSS computes
minset [subset of the minimum set] on the basis of dependencies
maintained locally; and sends the checkpoint request along with the
minset[] to the relevant MSSs. On receiving checkpoint request, an
MSS asks concerned processes to checkpoint and computes new
processes for the minimum set. By using this technique, we have
tried to optimize the number of messages between MSSs. In case of
example, given in Section 2, point (i), MSS1 will send just one
c_req to MSS2 to checkpoint P3 and P4.
 When the initiator MSS commits the checkpointing process, it
sends the commit request along with the exact minimum set to all
MSSs and every MSS maintains up-to-date csn[]. This enables us
to maintain exact dependencies among processes. In our protocol,
ddvi[j]=1 only if Pi is directly dependent upon Pj in the current CI.
Therefore, useless checkpoint requests, as mentioned in Section 2
point (ii), are not sent in our algorithm.
 When Pi sends c_req to Pj, it also piggybacks csni[j] [4]. When Pj

receives c_req, it decides, on the basis of piggybacked csni[j],
whether c_req is useful. In our protocol, no useless c_req is sent,
therefore, csni[j] is not piggybacked onto c_req.
 In algorithm [4], when a process, say Pj, takes its tentative
checkpoint, it also finds the processes Pk such that Pj has received

m from Pk in the current CI. On the basis of MR, received with the
checkpoint request, Pj decides the following: (i) whether any
process has already sent the checkpoint request to Pk (ii) whether
the earlier checkpoint request to Pk is useless. In our protocol, no
useless checkpoint request is sent, therefore, data structures MR[] is
not piggybacked onto checkpoint requests. The decision (i) is taken
on the basis of tminset, maintained at every MSS. tminset maintains
the local knowledge about the minimum set. In our case, instead of
MR[], tminset is piggybacked onto checkpoint requests. The size of
the tminset is negligibly small as compared to MR[].
 In the first phase, all the MHs take induced checkpoints. When
the initiator MSS comes to know that all the processes in the
minimum set have taken their mutable checkpoints successfully, it
sends the request to all concerned processes to convert their
mutable checkpoints into tentative ones. Finally, when initiator
MSS comes to know that all concerned processes have taken their
tentative checkpoints successfully, it issues commit request. In this
way, if a process fails to take mutable checkpoint in the first phase,
then the loss of checkpointing effort is low. If all concerned MHs
take tentative checkpoints in the first phase and some process fails
to take its checkpoint, then the loss of checkpointing effort will be
exceedingly high.

3.6 An Example
We explain our checkpointing algorithm with the help of an
example. In Figure 1, at time t1, P2 initiates checkpointing process.
ddv2[1]=1 due to m1; and ddv1[4]=1 due to m2. On the receipt of
m0, P2 does not set ddv2 [3] =1, because, P3 has taken permanent
checkpoint after sending m0. We assume that P1 and P2 are in the
cell of the same MSS, say MSSin. MSSin computes minset (subset of
minimum set) on the basis of ddv vectors maintained at MSSin,
which in case of figure 1 is {P1, P2, P4}. Therefore, P2 sends
checkpoint request to P1 and P4. After taking its tentative
checkpoint, P1 sends m4 to P3. P3 takes mutable checkpoint before
processing m4. Similarly, P4 takes mutable checkpoint before
processing m5. When P4 receives the checkpoint request, it finds
that it has already taken the mutable checkpoint; therefore, it
converts its mutable checkpoint into tentative one. P4 also finds that
it was dependent upon P5 before taking its mutable checkpoint and
P5 is not in the minimum set. Therefore, P4 sends checkpoint request
to P5. At time t2, P2 receives responses from all relevant processes
and sends the commit request along with the minimum set [{P1, P2,
P4, P5}] to all processes. When a process, in the minimum set,
receives the commit message, converts its tentative checkpoint into
permanent one. When a process, not in the minimum set, receives
the commit message, it discards its mutable checkpoint, if any. For
the sake of simplicity, we have explained our algorithm with two-
phase scheme.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

45

3.7 The Checkpointing Algorithm
 Each process Pi can initiate the checkpointing process. Initiator
MSS initiates and coordinates checkpointing process on behalf of
MHi. It computes minset; and sends c_req along with minset to an
MSS if the later supports at least one process in the minset. It also
updates its tminset on the basis of minset. We assume that
concurrent invocations of the algorithm do not occur. For the sake
of simplicity, we explain only two-phase protocol.
 On receiving the c-req, along with the minset from the initiator
MSS, an MSS, say MSSi, takes the following actions. It updates its
tminset on the basis of minset. It sends the c_req to Pi if the
following conditions are met: (i) Pi is running in its cell (ii) Pi is a
member of the minset and (iii) c_req has not been sent to Pi. If no
such process is found, MSSi ignores the c_req. Otherwise, on the
basis of tminset, ddv vectors of processes in its cell, initial ddv
vectors of other processes, it computes tnp_minset [Refer Section
3.3]. If tnp_minset is not empty, MSSi sends c_req along with
tminset, tnp_minset to an MSS, if the later supports at least one
process in the tnp_minset. MSSi updates np_minset, tminset on the
basis of tnp_minset and initializes tnp_minset.
 On receiving c_req along with tminset, tnp_minset from some
MSS, an MSS, say MSSj, takes the following actions. It updates its
own tminset on the basis of received tminset, tnp_minset and finds
any process Pk such that Pk is running in its cell, Pk has not been sent
c_req and Pk is in tnp_minset. If no such process exists, it simply
ignores this request. Otherwise, it sends the checkpoint request to
Pk. On the basis of tminset, ddv[] of its processes and initial ddv[]
of other processes, it computes tnp_minset. If tnp_minset is not
empty, MSSj sends the checkpoint request along with tminset,
tnp_minset to an MSS, which supports at least one process in the
tnp_minset. MSSj updates np_minset, tminset on the basis of
tnp_minset. It also initializes tnp_minset.
 For a disconnected MH, that is a member of minimum set, the
MSS that has its disconnected checkpoint, converts its disconnected
checkpoint into tentative one. Algorithm executed at a process on
the receipt of a computation message is given in Section 3.4.
 When an MSS learns that all of its relevant processes have taken
their tentative checkpoints successfully or at least one of its
processes has failed to take its tentative checkpoint, it sends the
response message along with the np_minset to the initiator MSS.
If, after sending the response message, an MSS receives the
checkpoint request along with the tnp_minset, and learns that there
is at least one process in tnp_minset running in its cell and it has

not taken its tentative checkpoint, then the MSS requests such
process to take checkpoint. It again sends the response message to
the initiator MSS.
 When the initiator MSS receives a response from some MSS, it
updates its minset on the basis of np_minset, received along with
the response. Finally, initiator MSS sends commit/abort to all the
processes. When a process in the minimum set receives the commit
request, it converts its tentative checkpoint into permanent one and
discards its earlier permanent checkpoint, if any. On receiving
commit, a process discards its mutable checkpoint, if it is not a
member of the minimum set.

4. Performance Evaluation

4.1 General Comparison with the Cao-Singhal
Algorithm [4]:
We consider the two phases proposed algorithm for comparison
with other algorithms. As mentioned in Section 2 point (ii), some
useless checkpoint requests are sent in the algorithm [4]; whereas,
in the proposed protocol, no such useless checkpoint requests are
sent. In algorithm [4], when Pi sends checkpoint request to Pj, it also
piggybacks csni [j] and a data structure MR. MR is an array of n
pairs and each pair contains two fields: csn and r, where csn
contains the csn number and r is a bit vector of length n. MR
provides information to the request receivers on checkpoint request
propagation decision-making. csni[j] enables Pj to decide whether Pj

inherits the request. These data structures are piggybacked onto
checkpoint requests to handle useless checkpoint requests. In the
proposed protocol, no useless checkpoint request is sent; therefore,
there is no need to piggyback these data structures onto checkpoint
requests. The csni[j] is integer; its size is 4 bytes. In worst case the
size of MR[] is (4n +n/8) bytes (n is the number of processes in the
distributed system). In the proposed protocol, tminset and
tnp_minset are piggybacked onto checkpoint requests. Size of each
data structure is: n/8 bytes. The extra bytes piggybacked onto each
checkpoint request in the algorithm [4] as compared to the proposed
one are: (29n+32)/8. The number of useless checkpoint requests in
[4] depends upon the number of processes, message sending rate,
dependency pattern of processes etc. In some cases, the number of
useless checkpoint requests in [4] may be exceedingly high. The
useless checkpoint requests further increase the message
complexity of the algorithm [4]. In the proposed protocol, the
exact minimum set is broadcasted on the static network along with
commit request, whereas in the Cao-Singhal [4] algorithm, only
commit request is broadcasted. The size of the minimum set is n/8
bytes.
 Concurrent executions of the algorithm are allowed in [4]. The
algorithm [4] may lead to inconsistencies during its concurrent
executions [15]. The proposed algorithm can be modified to allow
concurrent executions on the basis of the methodology proposed in
[15].

5. CONCLUSION
We have proposed a nonblocking coordinated checkpointing
protocol for mobile distributed systems, where only minimum
number of processes takes permanent checkpoints. We have
reduced the message complexity as compared to Cao-Singhal
algorithm [4], while keeping the number of useless checkpoints
unchanged. The proposed algorithm is designed to impose low
memory and computation overheads on MHs and low
communication overheads on wireless channels. An MH can remain
disconnected for an arbitrary period of time without affecting
checkpointing activity. We address the issues like: failures during
checkpointing, disconnections, maintaining exact dependencies

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

46

among processes, and concurrent initiations. We also try to
minimize the loss of checkpointing effort if some process fails to
take its checkpoint in the first phase but it will increase the
synchronization overhead.

REFERNCES

1) Acharya A. and Badrinath B. R., “Checkpointing Distributed

Applications on Mobile Computers,” Proceedings of the 3rd
International Conference on Parallel and Distributed
Information Systems, pp. 73-80, September 1994.

2) Cao G. and Singhal M., “On coordinated checkpointing in
Distributed Systems”, IEEE Transactions on Parallel and
Distributed Systems, vol. 9, no.12, pp. 1213-1225, Dec 1998.

3) Cao G. and Singhal M., “On the Impossibility of Min-process
Non-blocking Checkpointing and an Efficient Checkpointing
Algorithm for Mobile Computing Systems,” Proceedings of
International Conference on Parallel Processing, pp. 37-44,
August 1998.

4) Cao G. and Singhal M., “Mutable Checkpoints: A New
Checkpointing Approach for Mobile Computing systems,”
IEEE Transaction On Parallel and Distributed Systems, vol.
12, no. 2, pp. 157-172, February 2001.

5) Chandy K. M. and Lamport L., “Distributed Snapshots:
Determining Global State of Distributed Systems,” ACM
Transaction on Computing Systems, vol. 3, No. 1, pp. 63-75,
February 1985.

6) Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson D.B., “A
Survey of Rollback-Recovery Protocols in Message-Passing
Systems,” ACM Computing Surveys, vol. 34, no. 3, pp. 375-
408, 2002.

7) Elnozahy E.N., Johnson D.B. and Zwaenepoel W., “The
Performance of Consistent Checkpointing,” Proceedings of the
11th Symposium on Reliable Distributed Systems, pp. 39-47,
October 1992.

8) Higaki H. and Takizawa M., “Checkpoint-recovery Protocol
for Reliable Mobile Systems,” Trans. of Information
processing Japan, vol. 40, no.1, pp. 236-244, Jan. 1999.

9) J.L. Kim, T. Park, “An efficient Protocol for checkpointing
Recovery in Distributed Systems,” IEEE Trans. Parallel and
Distributed Systems, pp. 955-960, Aug. 1993.

10) Koo R. and Toueg S., “Checkpointing and Roll-Back
Recovery for Distributed Systems,” IEEE Trans. on Software
Engineering, vol. 13, no. 1, pp. 23-31, January 1987.

11) Parveen Kumar, R K Chauhan, “A Coordinated Checkpointing
Protocol for Mobile Computing Systems”, International
Journal of Information and Computing Science, Vol. 9, No. 1,

pp. 18-27, 2006.
12) Lalit Kumar, M. Misra, R.C. Joshi, “Low overhead optimal

checkpointing for mobile distributed systems” Proceedings.
19th International Conference on IEEE Data Engineering, pp
686 – 88, 2003.

13) Neves N. and Fuchs W. K., “Adaptive Recovery for Mobile
Environments,” Communications of the ACM, vol. 40, no. 1,
pp. 68-74, January 1997.

14) Prakash R. and Singhal M., “Low-Cost Checkpointing and
Failure Recovery in Mobile Computing Systems,” IEEE
Transaction On Parallel and Distributed Systems, vol. 7, no.
10, pp. 1035-1048, October1996.

15) Weigang Ni, Susan V. Vrbsky and Sibabrata Ray, “ Pitfalls in
nonblocking checkpointing” World Science’s journal of
Interconnected Networks. Vol. 1 No. 5, pp. 47-78, March
2004.

16) Parveen Kumar, Lalit Kumar, R K Chauhan, “A low overhead
Non-intrusive Hybrid Synchronous checkpointing protocol for
mobile systems”, Journal of Multidisciplinary Engineering
Technologies, Vol.1, No. 1, pp 40-50, 2005.

17) Lalit Kumar, Parveen Kumar, R K chauhan “Logging based
Coordinated Checkpointing in Mobile Distributed Computing
Systems”, IETE journal of research, vol. 51, no. 6, 2005.

18) Lamports L., “Time, clocks and ordering of events in
distributed systems” Comm. ACM, 21(7), 1978, pp 558-565.

19) Pradhan D.K., Krishana P.P. and Vaidya N.H., “Recovery in
Mobile Wireless Environment: Design and Trade-off
Analysis,” Proceedings 26th International Symposium on
Fault-Tolerant Computing, pp. 16-25, 1996.

20) Pushpendra Singh, Gilbert Cabillic, “A Checkpointing
Algorithm for Mobile Computing Environment”, LNCS, No.
2775, pp 65-74, 2003.

21) Lalit Kumar Awasthi, P.Kumar, “A Synchronous
Checkpointing Protocol for Mobile Distributed Systems:
Probabilistic Approach” International Journal of Information
and Computer Security, Vol.1, No.3 pp 298-314, 2007.

22) Parveen Kumar, “A Low-Cost Hybrid Coordinated
Checkpointing Protocol for Mobile Distributed Systems”,
Mobile Information Systems pp 13-32, Vol. 4, No. 1, 2007.

