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Abstract: A checkpoint algorithm for mobile computing systems 
needs to handle many new issues like: mobility, low bandwidth of 
wireless channels, lack of stable storage on mobile nodes, 
disconnections, limited battery power and high failure rate of 
mobile nodes.   These issues make traditional checkpointing 
techniques unsuitable for such environments. Minimum-process 
coordinated checkpointing is an attractive approach to introduce 
fault tolerance in mobile distributed systems transparently. This 
approach is domino-free, requires at most two checkpoints of a 
process on stable storage, and forces only a minimum number of 
processes to checkpoint.  But, it requires extra synchronization 
messages, blocking of the underlying computation or   taking some 
useless checkpoints. In this paper, we propose a nonblocking 
coordinated checkpointing algorithm for mobile computing 
systems, which requires only a minimum number of processes to 
take permanent checkpoints. We reduce the message complexity as 
compared to the Cao-Singhal algorithm [4], while keeping the 
number of useless checkpoints unchanged. We also address the 
related issues like: failures during checkpointing, disconnections, 
concurrent initiations of the algorithm and maintaining exact 
dependencies among processes. Finally, the paper presents an 
optimization technique, which significantly reduces the number of 
useless checkpoints at the cost of minor increase in the message 
complexity. In coordinated checkpointing, if a single process fails 
to take its tentative checkpoint; all the checkpoint effort is aborted. 
We try to reduce this effort by taking soft checkpoints in the first 
phase at Mobile Hosts.  
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1. Introduction 

Mobile Hosts (MHs) are increasingly becoming common in 
distributed systems due to their availability, cost, and mobile 
connectivity. An MH is a computer that may retain its connectivity 
with the rest of the distributed system through a wireless network 
while on move.  An MH communicates with the other nodes of the 
distributed system via a special node called mobile support station 
(MSS).     A “cell” is a geographical area around an MSS in which 
it can support an MH. An  MSS has both wired and wireless links 
and it acts as an interface between the static network and a part of 
the mobile network. Static nodes are connected by a high speed 
wired network [1]. 
 A checkpoint is a local state of a process saved on the stable 
storage.  In a distributed system, since the processes in the system 
do not share memory, a global state of the system is defined as a set 
of local states, one from each process. The state of channels 
corresponding to a global state is the set of messages sent but not 
yet received. A global state is said to be “consistent” if it contains 
no orphan message; i.e., a message whose receive event is recorded, 

but its send event is lost [5]. To recover from a failure, the system 
restarts its execution from the previous consistent global state saved 
on the stable storage during fault-free execution. This saves all the 
computation done up to the last checkpointed state and only the 
computation done thereafter needs to be redone. 
 In coordinated or synchronous checkpointing, processes take 
checkpoints in such a manner that the resulting global state is 
consistent. Mostly it follows the two-phase commit structure [2], 
[5], [6], [7], [10], [15]. In the first phase, processes take tentative 
checkpoints, and in the second phase, these are made permanent. 
The main advantage is that only one permanent checkpoint and at 
most one tentative checkpoint is required to be stored. In the case of 
a fault, processes rollback to the last checkpointed state [6]. The 
Chandy-Lamport [5] algorithm is the earliest non-blocking all-
process coordinated checkpointing algorithm. 
 The existence of mobile nodes in a distributed system introduces 
new issues that need proper handling while designing a 
checkpointing algorithm for such systems [1], [4], [14], [16]. These 
issues are mobility, disconnections, finite power source, vulnerable 
to physical damage, lack of stable storage etc. Prakash and Singhal 
[14] proposed a nonblocking minimum-process coordinated 
checkpointing protocol for mobile distributed systems. They 
proposed that a good checkpointing protocol for mobile distributed 
systems should have low overheads on MHs and wireless channels; 
and it should avoid awakening of an MH in doze mode operation. 
The disconnection of an MH should not lead to infinite wait state. 
The algorithm should be non-intrusive and it should force minimum 
number of processes to take their local checkpoints. In minimum-
process coordinated checkpointing algorithms, some blocking of 
the processes takes place [3], [10], [11],[22] or some useless 
checkpoints are taken [4], [15]. 
 In minimum-process coordinated checkpointing algorithms, a 
process Pi takes its checkpoint only if it a member of the minimum 
set (a subset of interacting process). A process Pi is in the minimum 
set only if the checkpoint initiator process is transitively dependent 
upon it. Pj is directly dependent upon Pk only if there exists m such 
that Pj receives m from Pk in the current checkpointing interval [CI] 
and Pk has not taken its permanent checkpoint after sending m. The 
ith CI  of a process denotes all the computation performed between 
its ith and (i+1)th checkpoint, including the ith checkpoint  but not the 
(i+1)th checkpoint. 
 Cao and Singhal [4] achieved non-intrusiveness in the minimum-
process algorithm    by introducing the concept of mutable    
checkpoints. Kumar and Kumar [21] proposed a minimum-process 
coordinated checkpointing algorithm for mobile distributed 
systems, where the number of useless checkpoints and the blocking 
of processes are reduced using a probabilistic approach. Singh and 
Cabillic [20] proposed a minimum-process non-intrusive 
coordinated checkpointing protocol for deterministic mobile 
systems, where anti-messages of selective messages are logged 
during checkpointing. Higaki and Takizawa [8], and Kumar et al 
[17] proposed hybrid   checkpointing protocols where MHs 
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checkpoint independently and MSSs checkpoint synchronously. 
Neves et al. [13] gave a time based loosely synchronized 
coordinated checkpointing protocol that removes the overhead of 
synchronization and piggybacks integer csn (checkpoint sequence 
number). Pradhan et al [19] had shown that asynchronous 
checkpointing with message logging is quite effective for 
checkpointing mobile systems. 
 In the present study, we propose a nonblocking coordinated 
checkpointing algorithm for mobile computing systems, which 
requires only a minimum number of processes to take permanent 
checkpoints. We reduce the message complexity as compared to 
[4], while keeping the number of useless checkpoints unchanged. 

2. Previous Coordinated Checkpointing 
Algorithm 

Cao and Singhal [4] achieved non-intrusiveness in minimum-
process algorithm    by introducing the concept of mutable    
checkpoints. In this algorithm, checkpoint initiator process ( say Pi) 
sends the checkpoint request to Pj only if Pi receives m from Pj in 
the current CI. Pi also piggybacks csni[j] with the checkpoint 
request.  Pj inherits the request only if old_csnj ≤csni[j]. old_csnj is 
the csn of the current tentative or permanent checkpoint. If Pj 

inherits request, it acts as follows: i) Pj takes its tentative checkpoint 
and propagates the request to Pk  only if Pj receives m from Pk in the 
current CI; ii) and  if Pj  knows that some other process has already 
sent the checkpoint request to Pk and Pk is not going to inherit the 
current checkpoint request, then  Pj does not send the checkpoint 
request to Pk. The decision above in point (ii) is taken on the basis 
of data structure, MR[], received along with the checkpoint request. 
If Pj does not inherit the request, it simply ignores it.   This process 
is continued till the checkpoint request reaches all the processes on 
which the initiator process transitively depends. Suppose, during 
checkpointing process, P1 receives m from P2. P1  takes its mutable 
checkpoint before processing m only if  the following conditions 
are met: (i)  P2 has taken some checkpoint in the current initiation 
before sending m (ii) P1 has not taken any checkpoint in the current 
initiation (iii) P1 has sent at least one message since its last 
permanent checkpoint.  If P1 takes mutable checkpoint and is not a 
member of the minimum set, it discards its checkpoint on commit.  
We find the following observations in [4]: 
(i) In this algorithm, multiple checkpoint requests may be sent 
between two MSSs as follows. Let us consider mobile distributed 
systems with two MSSs, say MSS1 and MSS2; where P1 and P2 are 
in the cell of MSS1 and P3 and P4 are in the cell of MSS2.   Suppose, 
P1 initiates checkpointing; and P2 and P3 are in its dependency set; 
i.e., P1 is directly dependent upon P2 and P3. Similarly, P4 is in the 
dependency set of P2. In the existing protocol, P1 sends checkpoint 
request to P2 and P3. After this, P2 sends checkpoint request to P4. In 
this way two messages are sent from MSS1 to MSS2. Although, 
there should be sent only one message. There is sufficient 
information at MSS1 that P1 is transitively dependent upon P3 and 
P4.  
(ii) When Pi  sends the  checkpoint request to Pj,  following  
scenarios are possible:  (a) Pi knows that some other process has 
already sent the checkpoint request to Pj  (b) Pj is not in the 
minimum set (c) Pj discards the checkpoint request and Pj actually 
belongs to the minimum set.   
(iii) When Pi sends a checkpoint request to Pj, it also piggybacks 
csni[j] and a huge data structure MR[]. 
(iv) Ri[] maintains direct dependencies of Pi.  In this algorithm, it is 
possible that Ri[j] equals 1 and Pi is not directly dependent upon Pj 
for the current CI. For exactness, it is required that Ri[j]=1 only if Pi 

is directly dependent upon Pj. Hence, exact dependencies among 
processes are not maintained.  

 The useless checkpoint requests in above point [ii] are sent, 
because, exact dependencies among processes are not maintained as 
mentioned in point [iv]. The useless checkpoint requests are taken 
care of by sending the sufficient information along with the 
checkpoint requests in point [iii].  
 The useless checkpoint requests and the extra piggybacked 
information onto checkpoint requests increase the message 
complexity of the algorithm [4].   

3. The Proposed Checkpointing Algorithm 

 3.1  System Model 
The system model is similar to [4], [14].  A mobile computing 
system consists of a large number of MHs and relatively fewer 
MSSs. The distributed computation we consider consists of n 
spatially separated sequential processes   denoted by P0, P1, ..., Pn-1, 
running on fail-stop MHs or on MSSs. Each MH or MSS has one 
process running on it.  The processes do no share common memory 
or common clock. Message passing is the only way for the 
processes to communicate with each other. Each process progresses 
at its own speed and messages are exchanged through reliable 
channels, whose transmission delays are finite but arbitrary. The 
messages generated by the underlying computation are referred to 
as computation messages or simply messages, and are denoted by 
mi or m. We assume the processes to be non-deterministic. 

    3.2  Data Structures 
Here, we describe the data structures used in the checkpointing 
protocol. A process that initiates checkpointing, is called initiator 
process and its local MSS is called initiator MSS. If the initiator 
process is   on an MSS, then the MSS is the initiator MSS. Data 
structures are initialized   on the completion of a checkpointing 
process if not mentioned explicitly. We use the term potential 
checkpoint request to an MSS, if at least one process takes a 
checkpoint in its cell to this request. Sometimes, a process is forced 
to take its checkpoint before processing a particular message, called 
mutable checkpoint [4]; and for an MH, it is preferably stored on its 
local disk.   
i) Each process Pi maintains the following data structures, which 

are preferably stored on local MSS: 
 
 

own_csni: three bits nean integer; on switching c_statei: 
own_csni=csn[i]+1; on commit or abort : after        
                            updating csn[],  
own_csni=csn[i]; csn[] and  c_state are described 
later; 

mutablei : a flag that I  a  a flag; set to ‘1’ on mutable  
checkpoint;   

ddvi[]:    a bit vector of size n; ddvi[j] =1 implies Pi is 
directly dependent upon Pj for the current CI; 
ddvi[j] is set to ‘1’ only if  Pi processes m 
received  from Pj  such that m.own_csn  csn[j]; 
m.own_csn is the own_csn at  Pj at the time of 
sending m and csn[j] is Pj’s recent permanent 
checkpoint’s csn; initially for Pi, k, ddvi[k]=0 
and  ddvi[i]=1; for MHi it is kept at local MSS; 
maintenance of ddv[] is described in Section   
3.4; 

c_statei a flag; set to ‘1’ on tentative or mutable 
checkpoint or on receiving m from Pj s.t.  
(( c_statei= =0)  (m.c_state = = 1)  (!sendi )); 
m.c_state is the c_state of Pj at the time of 
sending m; 
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sendi  a flag; initialized to ‘0’ on permanent  
checkpoint; set to ‘1’ when  Pi sends first 
message after permanent checkpoint;  

 
ii)  Initiator MSS (any MSS can be initiator MSS) maintains the    

following Data structures: 

minset[]  a bit vector of size n; minset[k]=1 implies Pk 

belongs to the minimum set; initially, minset[]  
(subset of the minimum set ) is computed by using 
ddv vectors maintained at the initiator MSS [Refer 
Section 3.3]; on receiving response() from some 
MSS: minset=minset np_minset; after  receiving 
responses from all relevant processes, minset[] 
contains the exact minimum set; ‘’, is a operator 
for bitwise logical OR; np_minset  is described 
later; 

R[]:          a bit vector of length n; R[i]=1 implies  Pi has 
taken its  tentative checkpoint; 

timer1: a flag; initialized to ‘0’ when   the timer is set; set 
to ‘1’ when   maximum allowable time for 
collecting coordinated  checkpoint expires; 

 
 
iii) Each MSS (including initiator MSS) maintains the following 

data structures:   

D[]: a bit vector of length n; D[i]=1 implies   Pi is 
running in the cell of  MSS; it also includes the 
disconnected MHs supported by this MSS;  

EE[]: a bit vector of length n; EE[i] is set to ‘1’ if Pi is 
in its cell and it has taken its tentativeint.   
tentative checkpoint; 

E[]: a  bit vector of length n; E[i] is set to ‘1’ if 
checkpoint request  is sent to Pi and Pi is 
in the cell; 

s_bit: a flag; set to ‘1’ when some relevant process in 
its cell  fails to take   its tentative 
checkpoint;    

Pin: initiator process identification; 

MSSin  initiator MSS identification; 

own_csnin own_csn of initiator process;  

csn[]      an array of length n for n processes; csn[j] 
denotes the Pj’s most recent committed 
checkpoint’s csn; on commit, for all j, (if minset 
[j]==1) csn[j]++; minset[] is the exact minimum 
set received along with the commit request; 
csn[] is not updated on tentative or mutable  
checkpoints; we maintain one csn array for each 
MSS and not for each process; 

tnp_minset a bit vector of length n; it contains the new 
processes found for the minimum set while 
executing  a potential  checkpoint request [Refer 
Section 3.3]; 

np_minset a bit vector of length n; it contains all new 
processes found for the minimum set at the 
MSS; on each potential checkpoint request: if 
(tnp_minset≠) np_minset= np_minset 
tnp_minset; 

tminset  a bit vector of length n; tminset[k]=1 implies Pk 
belongs to the minimum set; it maintains the 
local knowledge of the minimum set; on 
receiving tminset, minset, tnp_minset along with 
c_req (checkpoint request): tminset=tminset 
c_req.tminset,  tminset=tminset 
c_req.minset,  tminset=tminset 

c_req.tnp_minset; on each potential 
checkpoint request, tnp_minset is computed, if 
(tnp_minset≠) tminset= tminset tnp_minset;  

chkpt a flag; set to 1 when the MSS learns that some 
checkpointing process is going on; 

c_req a checkpoint request; when MSSin sends c_req 
to MSSp, it piggybacks the data structures: Pin, 
MSSin, own_csnin, MSSp, minset; any other 
MSS piggybacks tminset, tnp_minset in place of 
minset; 

 

    3.3  Computation of minset or tnp_minset: 
Let D be the bit dependency matrix of n*n, where jth row denote the 
ddv[] of Pj. For making dependency matrix at an MSS, if a process, 
say Pk, is not in the cell of MSS, then its initial ddv[] vector is  
assumed. Initial ddv[] of Pk is: i, ddv[i]=0; ddv[k]=1.   

Computation of minset[]: Let Pi be the initiator 
process.  
          A= ddvi[]; minset=ddvi[]; A=A×D; 
         While (A≠minset[]) do { minset=A; A= A×D;} 

Computation of tnp_minset: 
  A=tminset; B=tminset; B=B×D; 
        While (A≠B) do { A=B; B= B×D;} 
          Initialize tnp_minset; 
       for(i=0;i<n;i++) 
            If(A[i]==1tminset[i]==0) tnp_minset[i]=1; 
 MSSin initially computes the minset[] on the basis of 
dependencies of local processes; the minset[] thus computed is 
based on the direct dependencies of the local processes and it is a 
subset of the minimum set. Suppose, MSSin sends c_req to MSSs 
along with minset[] and some process (say Pk)  is found at MSSs, 
which takes the checkpoint to this c_req. All MSSs maintains the 
processes of minimum set to the best of their knowledge in tminset. 
It is required to minimize duplicate checkpoint requests. Suppose, 
there exists some process (say Pl) such that Pk is directly dependent 
upon Pl and Pl is not in the tminset (maintained by MSSs), then 
MSSs sends c_req to Pl. The new processes found for the minimum 
set while executing a potential checkpoint request at an MSS are 
stored in tnp_minset. For example, in the present case: 
tnp_minset={Pl}. MSSs sends the c_req to Pl; Pl  is stored in  
np_minset and it is removed from the tnp_minset. In this way, 
np_minset at an MSS maintains all new processes found for the 
minimum set while executing c_req from MSSin or other MSSs. 
When an MSS finds that all the local processes, which were asked 
to take checkpoints, have taken their checkpoints, it sends the 
response to the MSSin along with np_minset; so that MSSin may 
update its knowledge about minimum set and wait for the new 
processes before sending commit. In this way, MSSin sends commit 
only if all the processes in the minimum set have taken their 
tentative checkpoints.  
 

3.4 Maintenance of dependencies among processes    
 Suppose, a process Pi receives a message m from Pj, where 
m.own_csn is the own_csn  at Pj at the time of sending m. When Pi 
sets c_state, it maintains two temporary bit dependency vectors, 
ddv1[] and ddv2[], of length n. These are initialized to all zeroes. 
The dependencies created during checkpointing process are 
temporarily maintained in these vectors. ddv1[] maintains 
dependencies at Pi such that Pj has taken its tentative checkpoint 
before sending m. These dependencies persist on completion of the 
checkpointing process in all cases. ddv2[]  maintains dependencies 
at Pi such that Pj has not  taken its tentative checkpoint before 
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sending m. These dependencies persist on completion of the 
checkpointing process only if Pj  is not included in the minset[].  
Algorithm executed at Pi on the receipt of m from Pj: 
if  (m.own_csn<=csn[j]) 
 receive (m); 
else if  (( c_statei= =0)  (m.own_csn = = csn[j]))  ddv[j]=1; 
else if  ((  c_statei= =0)  (m.c_state = = 1)  (sendi )) 
      {Pi takes its mutable checkpoint before processing m; 
        own_csni++; c_statei=1; mutablei=1; ddv1[j]=1;} 
else if  ((  c_statei= =0)  (m.c_state = = 1)  (!sendi )) 
        {own_csni++; c_statei=1; ddv1[j]=1;} 
else if  (( c_statei= =1)  (m.own_csn = = csn[j]))  ddv2[j]=1; 
else if  (( c_statei= =1)  (m.own_csn > csn[j]))  ddv1[j]=1; 
On Commit or Abort, ddv vector of a process Pi is updated as 
follows:  
Case 1.  The checkpointing process is aborted. 
               for (k= 0; k<n; k++) 
{ if (ddv1[k]==1  ddv2[k]==1)  ddv[k]=1;}//all dependencies 
persist 
Case 2.  The checkpointing process is committed and Pi is in the 
minimum set. 
            for (k=0; k<n; k++) 
                   { ddv[k]=0; //previos dependencies of Pi are initialized 
                    if (ddv1[k]==1)  ddv[k]=1;  
                       if (ddv2[k]==1  minset[k]==0)   ddv[k]=1;}  
                  ddv[i]=1;  
Case 3.  The checkpointing process is committed and Pi is not in the 
minimum set.  
              for (k= 0; k<n; k++) 
            { if (ddv[k]==1  minset[k]==1)    ddv[k]=0;                 
         if (ddv1[k]==1)  ddv[k]=1; 
                      if (ddv2[k]==1  minset[k]==0)    ddv[k]=1;}     
  
Suppose, Pi receives mk from Pj, and becomes dependent upon it. If 
Pj commits its checkpoint such that send (mk) is recorded in the 
checkpoint of Pj, then ddvi[j] will be set to ‘0’. Otherwise, ddvi[j] 
will remain unchanged. Hence, if all the processes take 
checkpoints, then all the previous dependencies will be initialized; 
and on the contrary, if the whole of the checkpointing procedure is 
aborted, then all the previous dependencies will persist.  

3.5  Basic Idea  
The proposed checkpointing algorithm is based on keeping track of 
direct dependencies of processes. The initiator MSS computes 
minset [subset of the minimum set] on the basis of dependencies 
maintained locally; and sends the checkpoint request along with the 
minset[] to the relevant MSSs. On receiving checkpoint request, an 
MSS asks concerned processes to checkpoint and computes new 
processes for the minimum set. By using this technique, we have 
tried to optimize the number of messages between MSSs. In case of 
example, given in Section 2, point (i), MSS1 will send just one 
c_req to MSS2 to checkpoint P3 and P4.  
 When the initiator MSS commits the checkpointing process, it 
sends the commit request along with the exact minimum set to all 
MSSs and every MSS maintains up-to-date  csn[]. This enables us 
to maintain exact dependencies among processes. In our protocol, 
ddvi[j]=1 only if Pi is directly dependent upon Pj in the current CI. 
Therefore, useless  checkpoint requests, as mentioned in Section 2 
point (ii), are not sent in our algorithm.  
 When Pi sends c_req to Pj, it also piggybacks csni[j] [4]. When Pj 

receives c_req, it decides, on the basis of piggybacked csni[j], 
whether c_req is useful. In our protocol, no useless c_req is sent, 
therefore, csni[j] is not piggybacked onto c_req.  
 In algorithm [4], when a process, say Pj, takes its tentative 
checkpoint, it also finds the processes Pk  such that Pj has received 

m from Pk in the current CI. On the basis of MR, received with the 
checkpoint request, Pj decides the following: (i) whether any 
process has already sent the checkpoint request to Pk (ii) whether 
the earlier checkpoint request to Pk is useless.  In our protocol, no 
useless checkpoint request is sent, therefore, data structures MR[] is  
not piggybacked onto checkpoint requests. The decision (i) is taken 
on the basis of tminset, maintained at every MSS. tminset maintains 
the local knowledge about the minimum set. In our case, instead of 
MR[], tminset is piggybacked onto checkpoint requests. The size of 
the tminset is negligibly small as compared to MR[]. 
 In the first phase, all the MHs take induced checkpoints. When 
the initiator MSS comes to know that all the processes in the 
minimum set  have taken their mutable checkpoints successfully, it 
sends the request to all concerned processes to convert their 
mutable checkpoints into tentative ones. Finally, when initiator 
MSS comes to know that all concerned processes have taken their 
tentative checkpoints successfully, it issues commit request. In this 
way, if a process fails to take mutable checkpoint in the first phase, 
then the loss of checkpointing effort is low. If all concerned MHs 
take tentative checkpoints in the first phase and some process fails 
to take its checkpoint, then the loss of checkpointing effort will be 
exceedingly high.  

3.6 An Example 
We explain our checkpointing algorithm with the help of an 
example. In Figure 1, at time t1, P2 initiates checkpointing process. 
ddv2[1]=1 due to m1; and ddv1[4]=1 due to m2. On the receipt of 
m0, P2 does not set ddv2 [3] =1, because, P3 has taken permanent 
checkpoint after sending m0.  We assume that P1 and P2 are in the 
cell of the same MSS, say MSSin. MSSin computes minset (subset of 
minimum set) on the basis of ddv vectors maintained at MSSin, 
which in case of figure 1 is {P1, P2, P4}. Therefore, P2 sends 
checkpoint request to P1 and P4. After taking its tentative 
checkpoint, P1 sends m4 to P3.  P3 takes mutable checkpoint before 
processing m4. Similarly, P4 takes mutable checkpoint before 
processing m5. When P4 receives the checkpoint request, it finds 
that it has already taken the mutable checkpoint; therefore, it 
converts its mutable checkpoint into tentative one. P4 also finds that 
it was dependent upon P5 before taking its mutable checkpoint and 
P5 is not in the minimum set. Therefore, P4 sends checkpoint request 
to P5. At time t2, P2 receives responses from all relevant processes 
and sends the commit request along with the minimum set [{P1, P2, 
P4, P5}] to all processes. When a process, in the minimum set, 
receives the commit message, converts its tentative checkpoint into 
permanent one. When a process, not in the minimum set, receives 
the commit message, it discards its mutable checkpoint, if any. For 
the sake of simplicity, we have explained our algorithm with two-
phase scheme.  
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3.7 The Checkpointing Algorithm 
 Each process Pi can initiate the checkpointing process.  Initiator 
MSS initiates and coordinates checkpointing process on behalf of 
MHi. It computes minset; and  sends  c_req along with minset to an 
MSS if the later  supports at least one process in the minset. It also 
updates its tminset on the basis of minset. We assume that 
concurrent invocations of the algorithm do not occur. For the sake 
of simplicity, we explain only two-phase protocol.    
 On receiving the c-req, along with the minset from the initiator 
MSS, an MSS, say MSSi, takes the following actions. It updates its 
tminset on the basis of minset. It sends the c_req  to  Pi if the 
following conditions are met: (i) Pi  is running in its cell  (ii) Pi is a 
member of the minset and (iii) c_req has not been sent to Pi. If no 
such process is found, MSSi ignores the c_req. Otherwise, on the 
basis of tminset, ddv vectors of processes in its cell, initial ddv 
vectors of other processes, it computes tnp_minset [Refer Section 
3.3]. If tnp_minset is not empty, MSSi  sends  c_req along with 
tminset, tnp_minset  to an MSS, if the later  supports at least one 
process in the tnp_minset. MSSi updates np_minset, tminset on the 
basis of tnp_minset and  initializes tnp_minset. 
 On receiving c_req along with tminset, tnp_minset from some 
MSS, an MSS, say MSSj, takes the following actions. It updates its 
own tminset  on the basis of received tminset, tnp_minset and finds 
any process Pk such that Pk is running in its cell, Pk has not been sent 
c_req  and Pk is in tnp_minset. If no such process exists, it simply 
ignores this request. Otherwise, it sends the checkpoint request to 
Pk. On the basis of tminset, ddv[] of its processes and initial ddv[] 
of other processes, it computes   tnp_minset. If tnp_minset is not 
empty, MSSj  sends the checkpoint request along with tminset, 
tnp_minset to an MSS, which supports at least one process in the 
tnp_minset.  MSSj updates np_minset, tminset on the basis of 
tnp_minset. It also initializes tnp_minset. 
 For a disconnected MH, that is a member of minimum set, the 
MSS that has its disconnected checkpoint, converts its disconnected 
checkpoint into tentative one. Algorithm executed at a process on 
the receipt of a computation message is given in Section 3.4.   
  When an MSS learns that all of its relevant processes have taken 
their tentative checkpoints successfully or at least one of its 
processes has failed to take its  tentative checkpoint, it sends the 
response message along with the np_minset   to the initiator MSS. 
If, after sending the response message, an MSS receives the 
checkpoint request along with the  tnp_minset, and learns that there 
is at least one process in tnp_minset running in its cell and it has 

not taken its  tentative checkpoint, then the MSS requests such 
process to take checkpoint. It again sends the response message to 
the initiator MSS. 
 When the initiator MSS receives a response from some MSS, it 
updates its minset on the basis of np_minset, received along with 
the response. Finally, initiator MSS sends commit/abort to all the 
processes.  When a process in the minimum set receives the commit 
request, it converts its tentative checkpoint into permanent one and 
discards its earlier permanent checkpoint, if any. On receiving 
commit, a process discards its mutable checkpoint, if it is not a 
member of the minimum set. 

4. Performance Evaluation 

4.1 General Comparison with the Cao-Singhal 
Algorithm [4]: 
We consider the two phases proposed algorithm for comparison 
with other algorithms.  As mentioned in Section 2 point (ii), some 
useless checkpoint requests are sent in the algorithm [4]; whereas, 
in the proposed protocol, no such useless checkpoint requests are 
sent. In algorithm [4], when Pi sends checkpoint request to Pj, it also 
piggybacks csni [j] and a data structure MR. MR is an array of n 
pairs and each pair contains two fields: csn and r, where csn 
contains the csn number and r is a bit vector of length n. MR 
provides information to the request receivers on checkpoint request 
propagation decision-making. csni[j] enables Pj to decide whether Pj 

inherits the request. These data structures are piggybacked onto 
checkpoint requests to handle useless checkpoint requests. In the 
proposed protocol, no useless checkpoint request is sent; therefore, 
there is no need to piggyback these data structures onto checkpoint 
requests. The csni[j] is integer; its size is 4 bytes. In worst case the 
size of MR[] is (4n +n/8) bytes (n is the number of processes in the 
distributed  system). In the proposed protocol, tminset and 
tnp_minset are piggybacked onto checkpoint requests. Size of each 
data structure is: n/8 bytes. The extra bytes piggybacked onto each 
checkpoint request in the algorithm [4] as compared to the proposed 
one are: (29n+32)/8. The number of useless checkpoint requests in 
[4] depends upon the number of processes, message sending rate, 
dependency pattern of processes etc. In some cases, the number of 
useless checkpoint requests in [4] may be exceedingly high. The 
useless checkpoint requests further increase the message 
complexity of the algorithm [4].    In the proposed protocol, the 
exact minimum set is broadcasted on the static network along with 
commit request, whereas in the Cao-Singhal [4] algorithm, only 
commit request is broadcasted. The size of the minimum set is n/8 
bytes.     
 Concurrent executions of the algorithm are allowed in [4]. The 
algorithm [4] may lead to inconsistencies during its concurrent 
executions [15].   The proposed algorithm can be modified to allow 
concurrent executions on the basis of the methodology proposed in 
[15].  
 

5.  CONCLUSION 
We have proposed a nonblocking coordinated checkpointing 
protocol for mobile distributed systems, where only minimum 
number of processes takes permanent checkpoints. We have 
reduced the message complexity as compared to Cao-Singhal 
algorithm [4], while keeping the number of useless checkpoints 
unchanged. The proposed algorithm is designed to impose low 
memory and computation overheads on MHs and low 
communication overheads on wireless channels. An MH can remain 
disconnected for an arbitrary period of time without affecting 
checkpointing activity. We address the issues like: failures during 
checkpointing, disconnections, maintaining exact dependencies 
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among processes, and concurrent initiations. We also try to 
minimize the loss of checkpointing effort if some process fails to 
take its checkpoint in the first phase but it will increase the 
synchronization overhead.  
 

REFERNCES 
 
1) Acharya A. and Badrinath B. R., “Checkpointing Distributed 

Applications on Mobile Computers,” Proceedings of the 3rd 
International Conference on Parallel and Distributed 
Information Systems, pp. 73-80, September 1994.  

2) Cao G. and Singhal M., “On coordinated checkpointing in 
Distributed Systems”, IEEE Transactions on Parallel and 
Distributed Systems, vol. 9, no.12, pp. 1213-1225, Dec 1998. 

3) Cao G. and Singhal M., “On the Impossibility of Min-process 
Non-blocking Checkpointing and an Efficient Checkpointing 
Algorithm for Mobile Computing Systems,” Proceedings of 
International Conference on Parallel Processing, pp. 37-44, 
August 1998. 

4) Cao G. and Singhal M., “Mutable Checkpoints: A New 
Checkpointing Approach for Mobile Computing systems,” 
IEEE Transaction On Parallel and Distributed Systems, vol. 
12, no. 2, pp. 157-172, February 2001. 

5) Chandy K. M. and Lamport L., “Distributed Snapshots: 
Determining Global State of Distributed Systems,” ACM 
Transaction on Computing Systems, vol. 3, No. 1, pp. 63-75, 
February 1985. 

6) Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson D.B., “A 
Survey of Rollback-Recovery Protocols in Message-Passing 
Systems,” ACM Computing Surveys, vol. 34, no. 3, pp. 375-
408, 2002. 

7) Elnozahy E.N., Johnson D.B. and Zwaenepoel W., “The 
Performance of Consistent Checkpointing,” Proceedings of the 
11th Symposium on Reliable Distributed Systems, pp. 39-47, 
October 1992. 

8) Higaki H. and Takizawa M., “Checkpoint-recovery Protocol 
for Reliable Mobile Systems,” Trans. of Information 
processing Japan, vol. 40, no.1, pp. 236-244, Jan. 1999. 

9) J.L. Kim, T. Park, “An efficient Protocol for checkpointing 
Recovery in Distributed Systems,” IEEE Trans. Parallel and 
Distributed Systems, pp. 955-960, Aug. 1993.  

10) Koo R. and Toueg S., “Checkpointing and Roll-Back 
Recovery for Distributed Systems,” IEEE Trans. on Software 
Engineering, vol. 13, no. 1, pp. 23-31, January 1987. 

11) Parveen Kumar, R K Chauhan, “A Coordinated Checkpointing 
Protocol for Mobile Computing Systems”, International 
Journal of Information and Computing Science, Vol. 9, No. 1, 

pp. 18-27, 2006.  
12) Lalit Kumar, M. Misra, R.C. Joshi, “Low overhead optimal 

checkpointing for mobile distributed systems” Proceedings. 
19th International Conference on IEEE Data Engineering, pp 
686 – 88, 2003. 

13) Neves N. and Fuchs W. K., “Adaptive Recovery for Mobile 
Environments,” Communications of the ACM, vol. 40, no. 1, 
pp. 68-74, January 1997. 

14) Prakash R. and Singhal M., “Low-Cost Checkpointing and 
Failure Recovery in Mobile Computing Systems,” IEEE 
Transaction On Parallel and Distributed Systems, vol. 7, no. 
10, pp. 1035-1048, October1996. 

15) Weigang Ni, Susan V. Vrbsky and Sibabrata Ray, “ Pitfalls in 
nonblocking checkpointing” World Science’s journal of 
Interconnected Networks. Vol. 1 No. 5,  pp. 47-78, March 
2004. 

16) Parveen Kumar, Lalit Kumar, R K Chauhan, “A low overhead 
Non-intrusive Hybrid Synchronous checkpointing protocol for 
mobile systems”, Journal of Multidisciplinary Engineering 
Technologies, Vol.1, No. 1, pp 40-50, 2005.    

17) Lalit Kumar, Parveen Kumar, R K chauhan “Logging based 
Coordinated Checkpointing in Mobile Distributed Computing 
Systems”, IETE journal of research, vol. 51, no. 6, 2005.  

18) Lamports L., “Time, clocks and ordering of events in 
distributed systems” Comm. ACM, 21(7), 1978, pp 558-565.  

19) Pradhan D.K., Krishana P.P. and Vaidya N.H., “Recovery in 
Mobile Wireless Environment: Design and Trade-off 
Analysis,” Proceedings 26th International Symposium on 
Fault-Tolerant Computing, pp. 16-25, 1996. 

20) Pushpendra Singh, Gilbert Cabillic, “A Checkpointing 
Algorithm for Mobile Computing Environment”, LNCS, No. 
2775, pp 65-74, 2003. 

21) Lalit Kumar Awasthi, P.Kumar, “A Synchronous 
Checkpointing Protocol for Mobile Distributed Systems: 
Probabilistic Approach” International Journal of Information 
and Computer Security, Vol.1, No.3 pp 298-314, 2007. 

22)  Parveen Kumar, “A Low-Cost   Hybrid Coordinated 
Checkpointing Protocol for Mobile Distributed Systems”, 
Mobile Information Systems  pp 13-32, Vol. 4, No. 1, 2007.    

  
 

 
 
 

 


