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Abstract 
This paper presents a clustering technique (GenClus) for gene 
expression data which can also handle incremental data. It is 
designed based on density based approach. It retains the 
regulation information which is also the main advantage of the 
clustering. It uses no proximity measures and is therefore free of 
the restrictions offered by them. GenClus is capable of handling 
datasets which are updated incrementally. Experimental results 
show the efficiency of GenClus in detecting quality clusters over 
gene expression data. Our approach improves the cluster quality 
by identifying sub-clusters within big clusters. It was compared 
with some well-known clustering algorithms and found to 
perform well in terms of the z-score cluster validity measure. 
Keywords: Clustering, microarray, gene expression, density 
based, incremental. 

1. Introduction 

According to [1], most data mining algorithms developed 
for microarray gene expression data deal with the problem 
of clustering. Clustering genes groups similar genes into 
the same cluster based on a proximity measure. Genes in 
the same cluster have similar expression patterns. One of 
the characteristics of gene expression data is that it is 
meaningful to cluster both genes and samples. Co-
expressed genes can be grouped into clusters based on 
their expression patterns [2] and [3]. In gene-based 
clustering, the genes are treated as the objects, while the 
samples are the features. In sample based clustering, the 
samples can be partitioned into homogeneous groups 
where the genes are regarded as features and the samples 
as objects. Both the gene-based and sample based 
clustering approaches search exclusive and exhaustive 
partitions of objects that share the same feature space. The 
third category, that is subspace clustering, captures 
clusters formed by a subset of genes across a subset of 
samples. For subspace clustering algorithms, either genes 
or samples can be regarded as objects or features. The 
details of the challenges and the representative clustering 

techniques will be discussed in Section 2. The result of 
clustering is dependant on the proximity measure used [4] 
and different measures give different results. In this paper, 
we introduce an effective gene-based clustering approach 
(GenClus), which is capable of identifying clusters and 
sub-clusters of arbitrary shapes of any gene expression 
dataset, even in presence of noise. GenClus attempts to 
find sub-clusters which may be relevant for biologists. It 
does not use any proximity measure during clustering the 
genes and therefore free from the restriction offered by 
various proximity measures. GenClus gives a hierarchical 
view of the clusters and sub-clusters formed. With the 
increasing development of internet technology and with 
the constant increase in the microarray experimentation 
conducted, it has led to the ever-increasing volume of 
data. There is therefore a need to introduce incremental 
clustering so that updates can be clustered in an 
incremental manner. To handle such increase in volume of 
microarray data, incremental clustering technique often 
has been found suitable. This paper also introduces an 
incremental version of GenClus i.e., InGenClus which has 
been established to perform well in terms of several gene 
datasets. 
 
Both GenClus and InGenClus can be found to be 
significant in view of the following points: 

 provides a hierarchical cluster solution; 
 free from the use of proximity measures; 
 faster processing due to simplified matching 

mechanism; 
 capable of handling noisy datasets; 
 does not require the number of clusters apriori; 

 
GenClus improves the quality of the clusters by 
identifying sub-clusters within large clusters. It can also 
handle the situation when the database is updated 
incrementally using less computation time. 
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In Section 2, we present some gene-based clustering 
techniques, Section 3 presents our proposed clustering 
algorithm GenClus and Section 4 presents our proposed  
incremental version of GenClus (InGenClus). Section 5 
reports the performance evaluation of the algorithms and 
finally Section 6 presents the conclusion. Next, we discuss 
some of the clustering techniques. 

2. Clustering Techniques 

The goal of gene-based clustering is to group co-expressed 
genes together. Co-expressed genes indicate co-function 
and co-regulation [4]. Gene expression data has certain 
special characteristics and is a challenging research 
problem. Here, we will first present the challenges of 
gene-based clustering and then review a series of gene-
based clustering algorithms. 

2.1 Challenges of Gene-based Clustering 

The purpose of clustering gene expression data is to reveal 
the natural structure inherent in the data. A good 
clustering algorithm should depend as little as possible on 
prior knowledge, for example requiring the pre-
determined number of clusters as an input parameter. 
Clustering algorithms for gene expression data should be 
capable of extracting useful information from noisy data. 
Gene expression data are often highly connected and may 
have intersecting and embedded patterns [5]. Therefore, 
algorithms for gene-based clustering should be able to 
handle this situation effectively. Finally, biologists are not 
only interested in the clusters of genes, but also in the 
relationships (i.e., closeness) among the clusters and their 
sub-clusters, and the relationship among the genes within 
a cluster (e.g., which gene can be considered as the 
representative of the cluster and which genes are at the 
boundary area of the cluster). A clustering algorithm, 
which also provides some graphical representation of the 
cluster structure is much favored by the biologists. 

2.2 Gene based Clustering Techniques: A brief 
review 

A large number of clustering techniques have been 
reported for analyzing gene expression data. They have 
been broadly classified into the following approaches. 
 
Partitional Approaches: K-means [6] is a typical 
partition-based clustering algorithm used for clustering 
gene expression data. It divides the data into pre-defined 
number of clusters in order to optimize a predefined 
criterion. The major advantages of it are its simplicity and 
speed, which allows it to run on large datasets. However, 
it may not yield the same result with each run of the 

algorithm. Often, it can be found incapable of handling 
outliers and is not suitable to detect clusters of arbitrary 
shapes. A Self Organizing Map (SOM) [7] is more robust 
than K-means for clustering noisy data. It requires the 
number of clusters and the grid layout of the neuron map 
as user input. Specifying the number of clusters in advance 
is difficult in case of gene expression data. Moreover, 
partitioning approaches are restricted to data of lower 
dimensionality, with inherent well-separated clusters of 
high density. But, gene expression data sets may be high 
dimensional and often contain intersecting and embedded 
clusters. A hierarchical structure can also be built based on 
SOM such as Self-Organizing Tree Algorithm (SOTA) 
[8]. Another example of SOM extension is the Fuzzy 
Adaptive Resonance Theory (Fuzzy ART) [9] which 
provide some approaches to measure the coherence of a 
neuron (e.g., vigilance criterion). The output map is 
adjusted by splitting the existing neurons or adding new 
neurons into the map, until the coherence of each neuron 
in the map satisfies a user specified threshold. 
 
Hierarchical Approaches: Hierarchical clustering 
generates a hierarchy of nested clusters. These algorithms 
are divided into agglomerative and divisive approaches. 
Unweighted Pair Group Method with Arithmetic Mean 
(UPGMA), presented in [3], adopts an agglomerative 
method to graphically represent the clustered dataset. 
However, it is not robust in the presence of noise. In [10], 
the genes are split through a divisive approach, called the 
Deterministic-Annealing Algorithm (DAA). The Divisive 
Correlation Clustering Algorithm (DCCA) [11] uses 
Pearson’s Correlation as the similarity measure. All genes 
in a cluster have highest average correlation with genes in 
that cluster. Hierarchical clustering not only groups 
together genes with similar expression patterns but also 
provides a natural way to graphically represent the data set 
allowing a thorough inspection. However, a small change 
in the data set may greatly change the hierarchical 
dendrogram structure. Another drawback is its high 
computational complexity.  
 
Density Based Approaches: Density based clustering 
identifies dense areas in the object space. Clusters are 
highly dense areas separated by sparsely dense areas. 
DBSCAN [12] was one of the pioneering density based 
algorithms used over spatial datasets. In [5], Jiang et. al. 
propose the Density-Based Hierarchical clustering method 
(DHC) to identify co-expressed gene groups. It can 
identify embedded clusters in the dataset and can also 
handle outliers. It can effectively visualize the internal 
structure of the data set. A kernel density clustering 
method for gene expression profile analysis is reported in 
[13]. An alternative to this is to define the similarity of 
points in terms of their shared nearest neighbors. This idea 
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was first introduced by Jarvis and Patrick [14]. In [15], a 
density based gene clustering algorithm, DGC, is 
presented. DGC uses the regulation information along 
with the order preserving [16] nature of gene expression 
data to identify clusters over gene expression data. A 
density-based approach discovers clusters of arbitrary 
shapes even in the presence of noise. However, density-
based clustering techniques suffer from high 
computational complexity with increase in dimensionality 
(even if spatial index structure is used) and input 
parameter dependency. 
 
Model Based Approaches: Model based approaches 
provide a statistical framework to model the cluster 
structure in gene expression data. The Expectation 
Maximization (EM) algorithm [17] discovers good values 
for its parameters iteratively. It can handle various shapes 
of data, but can be very expensive since a large number of 
iterations may be required. In [18], a signal shape 
similarity method used to cluster genes using a Variational 
Bayes Expectation Maximization algorithm [19]. A 
model-based approach provides an estimated probability 
that a data object will belong to a particular cluster. Thus, 
a gene can have high correlation with two totally different 
clusters. However, the model-based approach assumes that 
the data set fits a specific distribution which is not always 
true. 
 
Graph Theoretical Approaches: In graph-based 
clustering algorithms, graphs are built as combinations of 
objects, features or both, as nodes and edges, and 
partitioned by using graph theoretic algorithms. Graph 
theoretic algorithms are also used for the problem of 
clustering cDNAs based on their oligo-nucleotide 
fingerprints [20]. CLuster Identification via Connectivity 
Kernels (CLICK) [21] is suitable for subspace and high 
dimensional data clustering. The Cluster Affinity Search 
Technique (CAST) by [2] takes as input pair-wise 
similarities between genes and an affinity threshold. It 
does not require a user-defined number of clusters and 
handles outliers efficiently. But, it faces difficulty in 
determining a good threshold value. To overcome this 
problem, E-CAST [22] calculates the threshold value 
dynamically based on the similarity values of the objects 
that are yet to be clustered. In [23], a graph based 
algorithm for identifying disjoint clusters over gene 
expression datasets is presented. It is based on the concept 
that inter-cluster genes have more repulsion between them 
while the repulsion of intra-cluster genes is less. The 
cluster results are dependent on a connectivity threshold 
which is calculated dynamically during the cluster creation 
process. 
 

Soft Computing Approaches: Fuzzy c-means [24] and 
Genetic Algorithms (GA) (such as [25] and [26]) have 
been used effectively in clustering gene expression data. 
The Fuzzy c-means algorithm requires the number of 
clusters as an input parameter. The GA based algorithms 
have been found to detect biologically relevant clusters but 
are dependent on proper tuning of the input parameters. 
 
The current information explosion, fuelled by the 
availability of the World Wide Web and the huge amount 
of microarray experiments being conducted, has led to 
ever increasing volume of data. Therefore, there is a need 
to introduce incremental clustering so that updates can be 
clustered in an incremental manner. Though a lot of 
research has been performed on incremental clustering in 
other application domains, incremental clustering of gene 
expression data has not been exploited much yet. 
 
Incremental Algorithms: In [27], the authors present an 
incremental clustering approach based on the DBSCAN 
[12] algorithm. A one pass clustering algorithm for 
relational datasets is proposed in [28]. Rough set theory is 
employed in the incremental approach for clustering 
interval datasets in [29]. In [30], an incremental genetic K-
means algorithm is presented. In [31], an incremental gene 
selection algorithm using a wrapper-based method that 
reduces the search space complexity since it works on the 
ranking directly, is presented. In [32], an incremental 
clustering over gene expression data is presented that uses 
the regulation information to store the cluster information 
for use when clustering genes incrementally.  

2.3. Discussion 

From the discussion above, we conclude that various 
clustering algorithms require different types of input 
parameters and clustering results are highly dependent on 
the values of parameters. Gene expression data has 
coherent patterns embedded in the full gene space, 
identification of which is an important research field. 
Coherent genes may indicate co-regulation and hence fall 
under the same functional classification. Clustering 
algorithms that do not require the number of clusters as an 
input parameter and are robust to noise are of utmost 
importance. Clustering algorithms are sensitive to the 
proximity measure chosen. In this paper, we present a 
gene based clustering technique which is able to identify 
clusters automatically from the dataset. An incremental 
version of GenClus is also presented that is capable of 
handling incremental gene expression datasets. 
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3. GENCLUS 

GenClus is a gene based clustering technique which 
adopts the notion of density based approach as can be 
found in [12], [15]. It exploits a discretization technique 
which retains the up- or down- regulation information. 
GenClus normalizes the gene expression data and works 
over a discrete domain (of regulation information). 
Clustering is then run on the discretized data. The gene 
expression data is normalized to have mean 0 and standard 
deviation 1. Expression data having a low variance across 
conditions as well as data having more than 3-fold 
variation are filtered. Discretization is then performed on 
this normalized expression data. Discretization uses the 
regulation information, i.e. up- or down- regulation in 
each of the conditions for a particular gene. Here, let G be 
the set of all genes and T be the set of all conditions. The 
discretization is done as follows: 
 
i. The discretized value of gene gi at condition, t1 (i.e., the 
first condition) 
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ii. The discretized values of gene gi at conditions tj (j = 
1,..(T − 1)) i.e., at the rest of the conditions (T − {t1}) 
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where

ji tg , is the discretized value of gene gi at conditions 

tj (j = 1,..(T − 1)). The expression value of gene gi at 
condition tj is given by

ji tg , . We see in the above 

computation that the first condition, t1, is treated as a 
special case and its discretized value is directly based on 

1,tg i
   i.e., the expression value at condition t1. For the rest 

of the conditions the discretized value is calculated by 
comparing its expression value with that of the previous 
value. This helps in finding whether the gene is up- (1) or 
-down (-1) regulated at that particular condition. Each 
gene will now have a regulation pattern (  ) of 0, 1, and -

1 across the conditions or time points. This pattern is 
represented as a string. 
 

 

Fig. 1. Expression profiles of an example dataset 

 

Fig. 2. Regulation and range information of the example dataset of 1 

Each gene is divided into various range−ids depending on 
their expression values as follows. The range value for 
each expression level is given by uniformly dividing the 
difference between the maximum and minimum values in 
the normalized data. 

I

MinMax
valuerange EVEV 

_
 

where MaxEV is the maximum expression value and MinEV 

is the minimum expression value. For example, suppose 
interval, I = 7. Therefore, we will have 7 range_ids (3, 2, 
1, 0, -1, -2, -3), where the expression values of a gene 
falling in the corresponding range will get its range_id. 
Now, each gene will have a pattern of range_ids across 
the conditions or time points which is represented as a 
string. Fig. 2 illustrates an example of a discretized matrix 
showing the regulation pattern and range_ids, where the 
number of intervals is set to 7, namely (3,2,1,0,-1,-2,-3). 
The regulation information and range values are used 
together to cluster the gene expression dataset using a 
density based approach. A string matching approach is 
used for matching the regulation pattern and range pattern 
of two genes. Next, we give some definitions which 
provide the foundation of GenClus. 
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Definition 1. Neighborhood level of a gene: A gene gj is 
said to be a neighbor of gene gi i.e., )( ilevelj gNg  if (i) gi 

matches with gj over each of the v conditions, where v is 
greater than a user defined threshold, α; (ii) range_id(gi, 
tk) ± level = range_id(gj, tk), tk refers to the conditions 
where  k = 1, 2, · · · , T and level is a dynamically 
calculated parameter. (Initially level = 0). 
 
Definition 2. Core gene: A gene gi is said to be a core gene 
if | Nlevel(gi) | ≥ σ (user-defined threshold). 
In our experiments, we have obtained good results for σ = 
2. Initially, level = 0 and the neighborhood of gene gi is 
searched for genes satisfying the core gene condition of 
Definition 2. If no neighbor gene is found, then level is 
increased in both positive and negative range by one i.e., 
we search for neighbor genes in adjacent range_ids of (gi, 
tk) and the neighborhood search continues. 
 
Definition 3. Direct-Reachability: A gene gj is said to be 
directly reachable from another gene gi if gi is a core gene 
and )( ilevelj gNg  . 

 
Definition 4. Reachability: A gene gj is said to be 
reachable from another gene gi if there is a chain of genes 
g1, g2, · · · , gp between gi and gj such that gi+1 is directly 
reachable from gi. 
 
Finding sub-clusters within bigger clusters gives the finer 
clustering of a dataset. Sub-cluster information may be 
useful for the biologists by means of visual display and in 
the interpretation. 
 
Definition 5. Sub-Cluster: Let DG be a database of genes. 
A sub-cluster Si is a non-empty subset of DG satisfying the 
following conditions: 
1.  gi, gj : if gi Si and gj is reachable from gi, then 
gjSi. 
2. gi matches with gj over each of the v conditions. 
3. range_id(gi, tk) ± level = range_id(gj , tk), tk refers to the 
conditions where k = 1, 2, · · · , T. 
 
Definition 6. Cluster: Gene gi, gjCi (ith cluster), if gi 
matches with gj over each of the v conditions i.e., all genes 
having same regulation pattern over v conditions are 
grouped into the same cluster. 
 
Subclusters Sj where, j = 1, 2, · · · will belong to cluster Ci 

if they have the same regulation pattern. 
 
Definition 7. Noise Genes: Let C1,C2, · · ·Cn be the set of 
clusters of DG, then noise is the set of genes in DG not 
belonging to any cluster Ci, i.e., 

}C  g : i | D  {g  noise ixGx   

 
The clustering process starts with an arbitrary gene gi and 
searches the neighborhood of it to check if it is core. If gi 
is not core then the process restarts with another 
unclassified gene. If gi is a core gene, then clustering 
proceeds with finding all reachable genes from gi. All 
reachable genes are assigned the same sub_cluster_id as 
gi. From the neighbors of gi, if any gene satisfies the core 
gene condition, sub cluster expansion proceeds with that 
gene. The process continues till no more genes can be 
assigned to the sub cluster. The process then restarts with 
another unclassified gene and starts forming the next sub 
cluster. The clustering process continues till no more 
genes can be assigned sub_cluster_id. Once all sub 
clusters have been assigned, the process groups all sub-
clusters as well as genes having no sub_cluster_id but 
having the same regulation pattern into the same cluster 
and assign them the same cluster_id. All unclassified 
genes are now termed as noise genes. 
 

 

Fig. 3. Clustering of the example dataset given in Fig. 2. Here, Cis (i =1, 
2, · · ·) are clusters; SCij refer to the jth sub-cluster of cluster i and UCik is 
the kth gene in cluster i not belonging to any sub-clusters. 

The clusters and sub-clusters for the example dataset of 
Fig. 2 are illustrated in Fig. 3. It can be observed that sub-
clusters give the highly coherent patterns in the dataset. 
The algorithms for cluster formation and cluster expansion 
are given in Fig. 4 and Fig. 5. 
 
Cluster_creation() 
//Pre-condition: All genes are unclassified 
// cluster id = 0 
FOR i from 1 to DG do 

IF gi.classified = unclassified THEN 
Cluster expand(gi , cluster id) 
cluster id++; 

END IF 
END FOR 

Fig. 4. Algorithm for cluster formation of GenClus 
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Microarrays generate tens of thousands of data in one 
experiment. Data volume is constantly increasing due to 
the huge amount of microarray experiments performed. 
While clustering this type of data, it is of utmost 
importance that the updations of the database are handled 
incrementally. Some of the incremental clustering 
algorithms are reported in section 2. Though a lot of work 
has focused on incremental clustering over spatial 
datasets, not much research has been done over 
incrementally handling gene expression data. In this paper, 
we also introduce an incremental clustering technique 
(InGenClus) for gene expression data, which is based on 
GenClus. Once clustering of the dataset is obtained, each 
of the clusters are represented by cluster profiles. The 
cluster profiles store the regulation of that particular 
cluster. The sub-clusters are represented by the sub-cluster 
profiles which stores the regulation and range information 
of that particular sub-cluster. This information is further 
used by GenClus when clustering the updated database 
incrementally. 
 
Cluster_expand(gi, cluster_id) 
IF get_core(gi) = 0 THEN 

gi.cluster_id = cluster_id; 
RETURN; 
ELSE 

gi.classified = classified; 
FOR j from 1 to DG do 

IF gj .classified = unclassified 
Cluster_expand(gj , cluster_id) 

END IF 
END FOR 

END IF 

Fig. 5. Algorithm for cluster expansion of GenClus 

4. Incremental Clustering 

In this section, we present InGenClus which is based on 
GenClus and is capable of handling incremental data. Due 
to the density based nature of GenClus, the insertion of a 
gene affects the current clustering only in the 
neighborhood of the gene. We examine the parts of an 
existing clustering affected by an update and show how 
GenClus can handle incremental updates of a clustering 
after insertions. The changes of the clustering of the gene 
database DG are restricted to the neighborhood of an 
inserted gene. The previously core genes [15] retain their 
core property but, non core genes (border genes or noise 
genes) may become cores. Thus new density connections 
may surface. The insertion of a gene gi may result in a 
change of cluster membership of genes in the 
neighborhood of gi and all genes reachable from one of 

these genes in }{'
iGG gDD  , where '

GD is the updated 

dataset. While inserting gi the following cases may occur: 
1. Fusion: A gene gi may be fused to a cluster Ci if 

regulation pattern of gi matches with cluster profile 
of Ci, then gi is fused into cluster Ci. Gene gi may 
be fused to a cluster Si if gi is reachable from Si. 

2. Cluster Creation: Gene gi may have same 
regulation pattern w.r.t. some other noise or 
unclassified gene(s) and may lead to the formation 
of a new cluster. 

3. Sub-cluster Creation: Gene gi may become core 
w.r.t.  (i) Some gene(s) in a cluster which are not 
members of any sub-cluster. This leads to the 
creation of a new sub-cluster. (ii) Some other noise 
or unclassified gene(s) and may lead to the 
formation of a new sub-cluster. 

4. Noise: If gi does not match with any of the cluster 
profiles then gi is a noise gene and no density-
connections are changed. 

InGenClus starts with a newly inserted gene gi and finds if 
its regulation and range information matches with any of 
the cluster or sub-cluster profiles then there can be the 
following cases: 
i. gi matches with cluster profile of Ci, then GenClus 

will assign cluster_id of Ci to gi. After insertion of 
gi, one of the genes 

ik Cg  and ik Sg   (Si is a sub-

cluster in Ci) may become core and hence can 
become a potential candidate for sub-cluster 
expansion (case 1). 

ii. gi matches with none of the cluster profiles, but it 
matches with some other unclassified genes. Then it 
creates a new cluster (case 2) and finds if it can 
form sub-clusters (case 3). Finally, it forms the 
cluster and/or sub-cluster profiles accordingly. 

iii. gi matches with cluster profile of Ci, then 
InGenClus will assign cluster_id of Ci to gi. After 
insertion of gi, any gene 

ik Cg  and gk not 

belonging to any sub-clusters in Ci may become 
core and hence may become a potential candidate 
for sub-cluster creation (case 3). 

iv. gi matches with none of the cluster profiles nor does 
it match with any other gene, then case 4 occurs. 

 
In case of fusion, the affected cluster profiles are updated 
based on an effective data fusion technique. To achieve 
better space time complexity, the cluster profiles are 
organized using an effective data structure. It has been 
found that the InGenClus yields the same result as when 
compared with GenClus, yet at a lesser time. 
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5. Performance Evaluation 

GenClus was implemented in Java in Windows 
environment and evaluated with several real-life datasets. 
GenClus was tested on the following three real-life data 
sets given in Table 1. All the datasets are normalized to 
have mean zero and standard deviation one.  Of the 
various datasets, some of the clusters formed from the full 
and reduced form of Dataset 2 are shown in Fig. 6 and 
Fig.7 and the clusters obtained from the reduced Dataset 1 
are shown   in   Fig.8. The   datasets   have   been   
reduced  by  
 

Table 1: Datasets used for evaluating the clustering algorithm 

Serial No Dataset 
No. of 
genes 

No. of 
conditions 

Source 

Datase
t 1 

Yeast 
CDC28-13 

[33] 

 
621

8 

 
17 

http://yscdp.stanford.
edu/yeast_cell_cycle/ 
full_data.html 

Datase
t 2 

Yeast 
Diauxic 

Shift [34] 

 
608

9 

 
7 http://www.ncbi.nlm 

.nih.gov/geo/query 

Datase
t 3 

Subset of 
Human 

Fibroblasts 
Serum 
[35] 

 
517 

 
13 http://www.science 

mag.org/feature/data/ 
984559.hsl 

 

 

Fig. 6. Some clusters are illustrated from the full Dataset 2 

 

Fig. 7. Result of GenClus on the reduced form of Dataset 2 

 
Fig. 8. Some clusters are illustrated from the Dataset 1 

 

Fig. 9. Some of the clusters obtained by GenClus over Dataset 3 

 

Fig. 10. Hierarchy of four clusters of Dataset 2. The full dataset is at the 
root, the clusters are shown with the single line frames, sub-clusters are 
shown with double line frames and the genes which are part of a higher 
level cluster but not part of any sub-clusters are shown with dotted line 
frames. 

 

Fig. 11. Some of the clusters obtained by InGenClus over data 
incrementally updated from Dataset 2 
 

filtering out low variance genes and genes having more 
than 3-fold standard deviation. Some of the clusters 
obtained by GenClus from Dataset 3 are shown in Fig. 9. 
The hierarchy of four of the clusters and sub-clusters of 
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Dataset 2 is shown in Fig. 10. In the figure, the full dataset 
is at the root, the clusters are shown with the single line 
frames, sub-clusters are shown with double line frames 
and the genes which are part of a higher level cluster but 
not part of any sub-clusters are shown with dotted line 
frames. The data from Dataset 2 was inserted 
incrementally and InGenClus was executed. Fig. 11 shows 
a sample output of some clusters of Dataset 2 with genes 
inserted incrementally. The inserted genes are shown in 
red color (grey for black & white images) with filled 
circles at the time points.  

5.1. Cluster Quality 

To assess the quality of our method, we need an objective 
external criterion. In order to validate our clustering result, 
we employed z-score and p-value. 
 
Z-score: For evaluating the quality of clusters produced 
by different algorithms, we need an objective external 
criterion. We obtain a statistical rating of the relative gene 
expression activity shown by the genes associated in each 
cluster and the GO terms. In order to validate our 
clustering result, we employ z-score [36] as the measure of 
agreement. To assess the quality of GenClus, we 
employed z-score [36] as the measure of agreement. 
Higher the value of z, better the cluster results indicating 
more biologically relevant clusters of genes. z-score is 
calculated by investigating the relation between a 
clustering result and the functional annotation of the genes 
in the cluster. We have used Gibbons ClusterJudge [36] 
tool to calculate the z-score.  

Table 2: z-scores for GenClus and its counterparts for Dataset 2 

Method 
Applied 

No. of 
Clusters 

Total no. of 
genes 

z-score 

k-means 
 

62 
 

614 5.57 

SOM  
42 

 
614 

 
5.78 

GenClus  
61 

 
614 

 
7.39 

 
To test the performance of the clustering algorithm, we 
compared the clusters identified by our method with the 
results from k-means and SOM. The result of applying the 
z-score on the reduced form of Dataset 2 is shown in 
Table 2. In this table GenClus was compared with the well 
known k-means and SOM. Similarly, InGenClus was 
implemented and tested over various datasets. The results 
were compared with GenClus and have been found 
satisfactory. Some of the results obtained by InGenClus 
over Dataset 2 are reported in Fig. 11. It has been found 
that InGenClus yields the same result as GenClus as can 
be observed from Table 3.  

Table 3: z-scores for GenClus and In GenClus for Dataset 1 

Method 
Applied 

No. of 
Clusters

Total no. of 
genes 

z-score 

GenClus 21 
 

384 11.68 

InGenClus 21
 

384 11.68

 
Biological significance: The biological relevance of a 
cluster can be verified based on the gene ontology (GO) 
annotation database located at http://db. yeastgenome.org 
/cgibin/GO/goTermFinder. It is used to test the functional 
enrichment of a group of genes in terms of three structured 
controlled ontologies, viz., associated biological processes, 
molecular functions and biological components. The 
functional enrichment of each GO category in each of the 
clusters obtained is calculated by its p-value. p-value 
represents the probability of observing the number of 
genes from a specific GO functional category within each 
cluster. A low p-value indicates the genes belonging to the 
enriched functional categories are biologically significant 
in the corresponding clusters. To compute the p-value, we 
used the software FuncAssociate [37]. FuncAssociate [37] 
computes the hypergeometric functional enrichment score 
based on Molecular Function and Biological Process 
annotations. The resulting scores are adjusted for multiple 
hypothesis testing using Monte Carlo simulations. 
FuncAssociate is a Web-based tool that accepts as input a 
list of genes and returns a list of GO attributes that are 
over-represented (or under-represented) among the genes 
in the input list.  
 
To test the biological significance of the clusters obtained 
by GCA, we use a reduced form of Dataset 1 obtained 
from http://faculty.washington.edu/kayee/cluster. Functio-
nal categories with p-value<7×10-07

 are reported in order 
to restrict the size of the paper. Of the various clusters 
obtained from the reduced form of Dataset 1, the highly 
enriched categories are shown in Table 4. As can be seen 
in cluster C3, the highly enriched categories of ‘cell 
cycle’, ‘DNA metabolic process’, ‘DNA replication’, 
‘chromosome’, etc. have p-values of 1.1×10-25, 7.6×10-22, 
4.1×10-21, 3.4×10-18 respectively. The highly enriched 
categories in cluster C6 are the ‘cellular bud’ and the ‘cell 
cycle’ with p-values of 3×10-12 and 8.4×10-12 respectively. 
The genes in clusters C3 and C6 are involved in cell cycle. 
Cluster C9 have genes involved in DNA replication. The 
cluster C10 contains highly enriched categories such as 
‘spindle’, ‘cytoskeletal part’, ‘microtubule cytoskeleton’ 
with p-values of 1.3×10-12, 1.8×10-11, 1.9×10-11 
respectively. C10 contains functions related to various 
phases of cell cycle. Cluster C13 contains various 
functional categories related to synthesis of various amino 
acids. From the results of Table 4, we see that the clusters 
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obtained by GenClus shows a high enrichment of 
functional categories. 

6. Conclusions 

This work presents a density based clustering approach 
which finds useful subgroups of highly coherent genes 
within a cluster and obtains a hierarchical structure of the 
dataset where the sub-clusters give the finer clustering of 
the dataset. GenClus does not require the number of 
clusters apriori and the clusters obtained have been found 
satisfactory on visual inspection and also based on z-score 
for three real-life datasets.  However, work is going on for 
establishing the effectiveness of GenClus over more real-
life datasets. An incremental version of GenClus, i.e., 
InGenClus is also introduced in this paper which helps to 
update the clustering result of GenClus for incremental 
data. The algorithm brings down the cost of performing 
GenClus on the whole database after insertions are carried 
out. The number of neighborhood queries is scaled down 
much effectively than allowing it to run on the whole 
updated dataset at a time. InGenClus has been found 
faster, yet yielding the same result when compared with 
GenClus. 
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