
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

26

Extended Diffie-Hellman Technique to Generate Multiple
Shared Keys at a Time with Reduced KEOs and its Polynomial

Time Complexity

Nistala V.E.S. Murthy1 and Vankamamidi S. Naresh2

1 Department of Computer Science and Systems Engineering, Andhra University
 Visakhapatnam-530003,India

2Department of Computer Science,S.V.K.P. and Dr. K.S.R. Arts and Science College

 Penugonda-534320,India

Abstract

Recently Biswas[1] extended Diffie-Hellman technique to generate
multiple two-person-shared keys by exchange of two public keys.
In this paper, we further generalize the Diffie-Hellman technique
to generate multiple two-person-shared keys by exchange of any
number of public keys and study its Polynomial Time Complexity,
Security etc. Also, an upper bound for the number of shared keys
in terms of the number of exchanged keys and for a given number
of shared keys, the minimum required number of keys to be
exchanged, were arrived at. Lastly, a comparative study between
the proposed technique and the Diffie-Hellman technique repeated
m-times is made.
Keywords: Diffie-Hellman technique, DDH problem, multiple
shared keys, key exchange operations, secure data transmission.

1. Introduction
Secure Data Transmission (SDT) is one of the most
important parts of Communication in these days with the
advent of several transactions being e-transitioned.
Interestingly, this SDT is to take place on public
transmission channels like, the Internet etc. which are very
much open now-a-days to every one including cyber
criminals. Hence, cryptosystems were developed and are
constantly under research. Some of the cryptosystem (used
between two persons) involve exchange of public keys on
public transmission channels and construction of a shared
key in private, using private keys.
One of the logical solutions to increase security in SDT is to
change the crypto-system-keys as frequently as possible. In
fact, the ability to dynamically and publicly establish a
session key for secured communication is a big challenge in
cryptography.

Now in this direction, Diffie-Hellman developed a simple
and easy to implement technique, which here onwards is
referred to as D-H. At any time, between two people, it
requires an exchange of one public key from each one to
construct one shared/common key, using their two private

keys. Biswas [1] generalized D-H to generate 15 multiple
keys using two public keys each between two persons.
Now in this paper, we further generalize Biswas[1] to
generate -1 multiple keys using m public keys between
two persons. The main advantages of the present work are:
i. The proposed technique reduces not only the
computational cost significantly but also the key exchange
over heads.
ii. Depending on the application and the security needed –by
increasing the number of sessions and the number of shared
keys, we can generate sufficient number of shared keys N,
by selecting

 m =
┌ |√ (log (N+1)/ log2)| ┐

One might think here that multiple use of different D-H
itself might solve the problem in multiple sessions. But
observe that it brings in additional key exchange operations
(KEOs) per session and an increase in overhead (Cf. [2]-
[4]). In such conditions, if multiple shared keys are
exchanged securely at a time with comparatively fewer
KEOs and if a key or even multiple keys are used in the
same session, it not only eases the establishment of session
keys, but also reduces the key exchange overhead
significantly. In what follows, first we recall the elements of
Diffie-Hellman technique.

 1.1. Diffie-Hellman technique
Diffie and Hellman [3] introduced the concept of two
person key exchange technique that allows two participants
to exchange two public keys through an unsecured channel
and generate a shared secured key between them.
Let A and B be two participants that do not know anything
about each other but wish to establish a secured shared key
between them.

Then they execute the following five steps:

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010
www.IJCSI.org

27

Step1: Both A and B agree on two large positive integers, n
and g such that n is a prime number and g is a group
generator.

Step2: A randomly chooses a positive integer, x which is
smaller than n and serves as A’s private key. Similarly, B
chooses its own private key, y.

Step3: Both A and B compute their public keys using
 X= mod n and Y= mod n, respectively.

Step4: They exchange their public keys through a public
communication channel.

Step5: Now both A and B compute their shared key K,
using
 K= mod n= mod n
 K= mod n= mod n
For practical applications, it is assumed that D-H holds
decisional DH (DDH) assumptions (Cf. [5], [6]) which
means that no polynomial time algorithm exists to compute
K up on knowing X,Y, g and n.

Now, in what follows, first we outline the Multiple Shared
Key technique using m public keys. We refer to this as
MSK-m, Next, we arrive at (1) an upper bound for the total
number of shared keys N (of course, not necessarily
distinct) generatable in MSK-m in terms of the number of
public keys m (2) a formula for the minimum number of
public keys m required in order to generate the required
number of shared keys N. Then we compare MSK-m with
the repeated application of D-H m-times, establishing its
polynomial time complexity. Lastly, some security aspects
of MSK-m and selection/communication of shared keys is
discussed.

2.0 Generation of -1 two person shared keys at a
time by exchanging m public keys

In brief, each person in the proposed technique assumes m
random values namely x1, x2, ...,xm and generates m public
keys,X1, X2,...Xm. These keys are then exchanged between
the two participants and multiple shared keys are generated.
The details of shared key generation are given below.

2.1 Multiple Shared key (MSK) Technique

The participant A generates m public keys as given below
and sends to B. So, , = mod n, 1≤ i≤ m where Xi and xi,
for i=1,2,…,m, are the public and private keys of A.
Similarly the participant B chooses private keys y1,y2,....,.ym
randomly and generates m public keys as

 = mod n, 1≤ j≤ m

and sends them to A.Now on exchange of m pairs of public
keys, the participants can generate more than one shared
key, because, instead of a single combination of the private
keys (xy) as exists in the basic (DH), ”m2” combinations
such as (xiyj),1≤ i≤ m, 1≤ j≤m, exist and each of them can
generate a DH style key. The generation of m2 shared keys is
as follows .The person A can compute the following keys:

 = mod n = mod n, 1 ≤ i ≤ m, 1 ≤ j ≤ m..

The person B can compute the following keys:

 = mod n = mod n, 1 ≤ i ≤ m, 1 ≤ j ≤ m.

Here = , 1 ≤ i ≤ m, 1 ≤ j ≤ m. These m2 keys are
called the base keys. Additional shared keys can be
derived by multiplying these base keys in different
combinations which are called extended keys. The
extended keys are derived as follows.
For example, multiplying two base keys at a time out of m2
base keys generates C(m2,2) shared keys such as

 K= × = mod n

Multiplying three base keys at a time out of m2 base keys
generates C(m2,3) shared keys such as

 K= × × = mod n.
 .
.

Multiplying m2 – 1 base keys at a time out of m2 base keys
generates C(m2,m2-1) shared keys such as

K = K11×K12×.....×K1m×.…×Km1×Km2×…×Kmm−1

 = mod n

Finally by multiplying all m2 base keys generates only
one shared key

 K = K11×K12×.....×K1m×.…×Km1×Km2×…×Kmm,

 = mod n

Using the above discussion, in what follows, we arrive at
the total number of shared keys at a time, in terms of the
number of exchanged keys.

2.2 An upper bound for the total number of shared
keys in the proposed technique

The total number of shared keys

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010
www.IJCSI.org

28

 = Number of base keys + The number of extended keys,
which can be easily seen to be -1
.
Observe that for m = 2, we get the 15 shared keys
mentioned in Biswas[1].

Example

2.3 A lower bound for m to generate the required
number of shared keys

Observe that for -1≥ N, ≥ N+1,

m2log2 ≥ log N+1, m ≥
┌ |√ (log (N+1)/ log2)| ┐

Therefore by selecting m =
┌ |√ (log (N+1)/ log2)|

┐

we can generate at least N shared keys.

Example: For instance if we required N = 50000
shared keys we find that

 m =
┌

 |√ (log (N+1)/ log2)|
┐

 =
┌

|√ (log (50001)/ log2)|
┐

 =
┌

 0 .3950907406
┐

 = 4
Thus, by exchanging 4 public keys one can generate
as many as 65535 shared keys, may be not all distinct.

2.4. Comparison between MSK-m and D-H repeated m-
times and the Polynomial Time Complexity of MSK-m

First observe that
i. To generate -1 shared keys in D-H technique it
requires -1 rounds and proposed technique (MSK-m)
requires single round

ii. To generate -1 shared keys it requires interchange of
2(-1) messages in D-H technique and 2m messages in
MSK-m.
iii. To generate -1 shared keys it requires 22(-1)
exponential operations in D-H technique and MSK-m
requires 2m2 +2m.
iv. To generate -1 shared keys it requires no
multiplications and MSK-m requires 2(2 -1 (m2-2) +1)
v. The time complexity of D-H is

 TD-H(m) = Ce2
2 (-1) = O()

Where Ce denotes time needed for execution of one
exponential operation.
So, D-H possibly has non polynomial (exponential) time
complexity. Hence, it requires more time for execution.
Since multiplications are very less expensive than
exponentiation, for time complexity we consider
exponential operations and hence the time complexity of
MSK

 TMSK-m(m) = Ce(2m2+2m.) =O (m2)

whereCe denotes time needed for execution of one
exponential operation.
Thus, MSK-m has polynomial (quadratic) time complexity.
So it requires less time for execution than D-H.

2.5. Security of the proposed technique

We consider DDH assumption for the security of the shared
keys generated using the Group-DH technique. For this we
assume large finite cyclic groups that hold DDH assumption
(Cf. [5]), and it is widely believed that there exist such
groups for which DDH is intractable. For instance, let p, q
and g be publicly known, where p and q are large primes
and p = |G|= 2q+1, and g is the generator of a subgroup
QRp of Zp* and q =|QRp|. If the participants choose

The number
of public

keys
exchanged(m)

Number of
base keys(m2)

Total number of
shared keys

(-1)

1 12=1 21-1=1

2 22=4 24-1=15
3 32=9 29-1=511
4 42=16 216-1=65535

. . .

. . .

. . .

Numbe
r
of
rounds

Interchan
ge
of
number
of
messages

Execution
 of number
of
exponentia
tions

Numberof
multiplicati
ons

Time
complexit
y

DH

 -1

2(-1)

22 (2 -1)

NIL

O()
(exponent

ial)

MS
K

1

2m

2m2 +2m.

2 -1(m
2-

2)+1

O (m2)
(quadrati

c)

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010
www.IJCSI.org

29

their private keys from Zq = {0, 1, 2. . . q -1}, then an
adversary cannot distinguish between the random keys
in QRp and the keys that are generated by DH
technique.
In what follows, we recall some material from Zheng-
Manz-Foss-Chen[7].

DDH assumption:
G is a finite cyclic group and g is a generator.
Given (ga, gb, gab) and (ga, gb, gc) for random a, b, c [1,
|G|], no efficient algorithm can decide that c = ab in G. In
other words, the value gab is indistinguishable in polynomial
time from a random number of G.
Using the DDH assumption, if K1 and K2 are random
numbers and PKi for i = 1, 2 are the corresponding public
values, then the shared value K = PK1 exp K2 = PK2 exp
K1using two-party secure group key exchange is
indistinguishable in polynomial time from a random value,
where exp is an exponentiation operation. From the security
point of view, the above assumption is very strong and
many secured practical cryptographic systems designed are
based on it. The present paper also follows this assumption
to generate secured multiple two-party shared keys.
Now we make the following Proposition.

2.5.1 Proposition:
m2 two-party shared keys k1, k2, k3……km

2(base keys)
derived in the application of the basic DH technique are
indistinguishable in polynomial time from random numbers.

Proof: Since each of the m2 shared keys is basically a D-H
style key and for D-H shared key the proposition is true, our
Proposition follows.
Corollary 1:
 The extended -1-m2 shared keys generated by
multiplying the m2 base keys in different combinations are
also indistinguishable in polynomial time from random
numbers.
For a communication, the participants must agree upon a
particular key. One method for the selection of a shared key
is shown below.

2.6 Selection of shared key

Now that the proposed extension can generate multiple
shared keys, it is necessary for us to be able to select a key
for a session. Here we suggest that one can follow a method
similar to that in the well known Merkle’s puzzle which is
recalled below:
A party generates n messages each with having a different
puzzle number and a secret key number and sends all the
messages to the other party in encrypted form. Note that a
different 20 bit key is used for encryption of each message.

The other party chooses one message at random and
performs brute-force attack to decrypt it -although it needs a
large amount of work, it is still computable. It then encrypts
its message with the key thus recovered and sends it to the
first party along with the puzzle number. Since it knows the
puzzle number, it thus identifies the key and decrypts the
message.
Similarly, in order to select a key out of -1shared keys,
one party generates a message comprising a shared key and
a puzzle number. After encrypting it either with the smallest
or largest key of the shared keys generated, it is sent to the
other party. The message is easily decrypted as the recipient
knows all keys and the (shared key, puzzle number) pair is
recovered. The party then either sends the puzzle number
alone or an encrypted message along with the puzzle
number to the first party, where the message is encrypted
with the shared key found. Since the first party knows the
puzzle number, it therefore identifies the session key and
can decrypt the message. For subsequent changes, the
present session key may be used to encrypt a shared key at
one end, and it is decrypted at the other end to obtain the
new session key.
Conclusions: Since the D-H technique is simple and easy to
implement and since MSK-m uses only the D-H style for
shared key generation, MSK-m is also easy to implement.
Further, using the lower and upper bounds for m and N (Cf.
1.2 and 1.3), the security levels can be increased in SDT
with relatively lesser operational overhead (Cf.1.4).

Acknowledgments

Author would like to thank the Management of S.V.K.P.
and Dr. K.S.R. Arts and Science College, for Sponsor
ing and financial support.

References
[1] G.P. Biswas, Diffie Hellman Technique Extended To
Multiple Two Party Keys And One Multi Party Key, IET
inf. Sec., 2008, Vol.2(1), pp.12-18.
[2] Menezes A.J., Elliptic Curve Public Key Crypto
Systems, Kluwer Academic Publishers, 1993.
[3] Diffie W. and Hellman M., New Directions in
Cryptography, IEEE Trans. Inf. Theory, Vol. 22(6), pp.
644–654, 1976.
[4] Stallings W., Cryptography And Network Security,
Principles And Practices, Pearson Education, 3rd Edn.,
2004.
[5] Boneh D., The Decision Diffie-Hellman Problem, Proc.
3rd Algorithmic Number Theory Symposium, Lecture
Notes in Computer Science, 1423, pp. 48–63, 1998.
[6] Boneh D. and Venkatesan R., Breaking RSA May Not
Be Equivalent to Factoring, Advances in Cryptology,
EUROCRYPT’98, pp. 59–71, 1998.
[7] ZHENG S., MANZ D., Alves-Foss J and Chen Y.,
Security And Performance Of Group Key Agreement

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010
www.IJCSI.org

30

Protocols, Proc. IASTED Int. Conf. Networks and
Communications Systems, pp. 321–327, March 2006.
[8] Merkle R.C., Secrecy, Authentication And Public Key
Systems, Communications ACM, Vol. 21(4), pp. 294–299,
1978.

About the Authors
Nistala V.E.S. Murthy is currently working as a Professor
in the department of Computer Science and Systems
Engineering of Andhra University, Visakhapatnam. He
developed f-Set Theory –wherein f-maps exists between
fuzzy sets with truth values in different complete lattices,
generalizing L-fuzzy set Theory of Goguen which
generalized the [0,1]-fuzzy set theory of Zadeh, the Father
of Fuzzy Set Theories. He also published papers on
Representation of various Fuzzy Mathematical (Sub)
structures in terms of their appropriate crisp cousins.

Vankamamidi Srinivasa Naresh is currently working as a
Director, for the Post Graduate Department of Computer
Science Courses in S.V.K.P. and Dr. K.S.R. Arts and
Science College. He obtained an M.Sc. in Mathematics
from Andhra University, an M.Phil. in Mathematics from
Madurai Kamaraj University and an M.Tech in Computer
Science and Engineering from J.N.T. University-
Hyderabad. He is also a recipient of U.G.C.-C.S.I.R.
JUNIOR RESEARCH FELLOSHIP and cleared NET for
LECTURERSHIP.

