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Abstract 

Recently Biswas[1] extended Diffie-Hellman technique to generate 
multiple two-person-shared keys by exchange of two public keys. 
In this paper, we further generalize the Diffie-Hellman technique 
to generate multiple two-person-shared keys by exchange of any 
number of public keys and study its Polynomial Time Complexity, 
Security etc.  Also, an upper bound for the number of shared keys 
in terms of the number of exchanged keys and for a given number 
of shared keys, the minimum required number of keys to be 
exchanged, were arrived at. Lastly, a comparative study between 
the proposed technique and the Diffie-Hellman technique repeated 
m-times is made. 
Keywords: Diffie-Hellman technique, DDH problem, multiple 
shared keys, key exchange operations, secure data transmission. 
 
1. Introduction 
Secure Data Transmission (SDT) is one of the most 
important parts of Communication in these days with the 
advent of several transactions being e-transitioned. 
Interestingly, this SDT is to take place on public 
transmission channels like, the Internet etc. which are very 
much open now-a-days to every one including cyber 
criminals. Hence, cryptosystems were developed and are 
constantly under research. Some of the cryptosystem (used 
between two persons) involve exchange of public keys on 
public transmission channels and construction of a shared 
key in private, using private keys. 
One of the logical solutions to increase security in SDT is to 
change the crypto-system-keys as frequently as possible. In 
fact, the ability to dynamically and publicly establish a 
session key for secured communication is a big challenge in 
cryptography. 
 
Now in this direction, Diffie-Hellman developed a simple 
and easy to implement technique, which here onwards is 
referred to as D-H.  At any time, between two people, it 
requires an exchange of one public key from each one to 
construct one shared/common key, using their two private  

keys. Biswas [1] generalized D-H to generate 15 multiple 
keys using two public keys each between two persons. 
Now in this paper, we further generalize Biswas[1] to 
generate  -1 multiple keys using m public keys between 
two persons. The main advantages of the present work are: 
i. The proposed technique reduces not only the 
computational cost significantly but also the key exchange 
over heads. 
ii. Depending on the application and the security needed –by 
increasing the number of sessions and the number of shared 
keys, we can generate sufficient number of shared keys N, 
by selecting  

                   m =
┌ |√ (log (N+1)/ log2)| ┐ 

One might think here that multiple use of different D-H 
itself might solve the problem in multiple sessions. But 
observe that it brings in additional key exchange operations 
(KEOs) per session and an increase in overhead (Cf. [2]-
[4]). In such conditions, if multiple shared keys are 
exchanged securely at a time with comparatively fewer 
KEOs and if a key or even multiple keys are used in the 
same session, it not only eases the establishment of session 
keys, but also reduces the key exchange overhead 
significantly. In what follows, first we recall the elements of 
Diffie-Hellman technique. 
 
 1.1. Diffie-Hellman technique 
Diffie and Hellman [3] introduced the concept of two 
person key exchange technique that allows two participants 
to exchange two public keys through an unsecured channel 
and generate a shared secured key between them. 
Let A and B  be two participants that do not know anything 
about each other but wish to establish a secured shared key  
between them.  
 
Then they execute the following five steps: 
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Step1: Both A and B agree on two large positive integers, n 
and g such that n is a prime number and g is a group 
generator. 
 
Step2: A randomly chooses a positive integer, x which is 
smaller than n and serves as A’s private key. Similarly, B 
chooses its own private key, y. 
 
Step3: Both A and B compute their public keys using  
 X=  mod n and Y=  mod n, respectively. 
 
Step4: They exchange their public keys through a public 
communication channel. 
 
Step5: Now both A and B compute their shared key K,     
using  
                  K=  mod n=  mod n 
                 K=  mod n=  mod n 
For practical applications, it is assumed that D-H holds 
decisional DH (DDH) assumptions (Cf. [5], [6]) which 
means that no polynomial time algorithm exists to compute 
K up on knowing X,Y, g and n.  
 
Now, in what follows, first we outline the Multiple Shared 
Key technique using m public keys. We refer to this as 
MSK-m, Next, we arrive at (1) an upper bound for the total 
number of shared keys N (of course, not necessarily 
distinct) generatable in MSK-m in terms of the number of 
public keys m (2) a formula for the minimum number of 
public keys m required in order to generate the required 
number of shared keys N. Then we compare MSK-m with 
the repeated application of D-H m-times, establishing its 
polynomial time complexity. Lastly, some security aspects 
of MSK-m and selection/communication of shared keys is 
discussed. 
 
2.0 Generation of  -1 two person shared keys at a 
time by exchanging m public keys 
 
In brief, each person in the proposed technique assumes m 
random values namely x1, x2, ...,xm and generates m public 
keys,X1, X2,...Xm. These keys are then exchanged between 
the two participants and multiple shared keys are generated. 
The details of shared key generation are given below. 
 
2.1 Multiple Shared key (MSK) Technique 
 
The participant A generates m public keys as given below 
and sends to B. So, , =  mod n, 1≤ i≤ m where Xi and xi, 
for i=1,2,…,m, are the public and private keys of A. 
Similarly the participant B chooses private keys y1,y2,....,.ym 
randomly and generates m public keys as  
 

 = mod n, 1≤ j≤ m 

and sends them to A.Now on exchange of m pairs of public 
keys, the participants can generate more than one shared 
key, because, instead of a single combination of the private 
keys (xy) as exists in the basic (DH), ”m2” combinations 
such as (xiyj),1≤ i≤ m, 1≤ j≤m, exist  and each of them can 
generate a DH style key. The generation of m2 shared keys is 
as follows .The person A can compute the following keys:  
 

 =  mod n =  mod n,   1 ≤ i ≤ m, 1 ≤ j ≤ m.. 
 

The person B can compute the following keys:   
                   

 =  mod n =  mod n,   1 ≤ i ≤ m, 1 ≤ j ≤ m. 
 

Here = , 1 ≤ i ≤ m, 1 ≤ j ≤ m. These m2 keys are 
called the base keys. Additional shared keys can be 
derived by multiplying these base keys in different 
combinations which are called extended keys. The 
extended keys are derived as follows. 
For example, multiplying two base keys at a time out of m2 
base keys generates C(m2,2) shared keys such as 
 
        K= ×  =  mod n 
 
Multiplying three base keys at a time out of m2 base keys 
generates C(m2,3)  shared keys such as 
 
      K= × × =  mod n. 
 . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
 
Multiplying m2 – 1 base keys at a time out of m2 base keys 
generates C(m2,m2-1) shared keys such as 
 
K = K11×K12×.....×K1m×.…×Km1×Km2×…×Kmm−1 

 

  =  mod n 
 

Finally by multiplying all m2 base keys generates only 
one shared key 
 
   K = K11×K12×.....×K1m×.…×Km1×Km2×…×Kmm, 

 

     =  mod n 
 
Using the above discussion, in what follows, we arrive at 
the total number of shared keys at a time, in terms of the 
number of exchanged keys. 
 
2.2 An upper bound for the total number of shared 
keys in the proposed technique 
 
The total number of shared keys 
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 = Number of base keys + The number of extended keys, 
which can be easily seen to be  -1 
. 
Observe that for m = 2, we get the 15 shared keys 
mentioned in Biswas[1]. 
 
Example 
 

2.3 A lower bound for m to generate the required    
number of shared keys 

Observe that for  -1≥ N,  ≥  N+1, 

m2log2  ≥  log N+1, m  ≥  
┌ |√ (log (N+1)/ log2)| ┐ 

Therefore by selecting m =
┌ |√ (log (N+1)/ log2)| 

┐ 

we can generate at least N shared keys. 

Example:  For instance if we required N = 50000 
shared keys we find that   

   m   = 
┌

 |√ (log (N+1)/ log2)| 
┐

 

         = 
┌ 

|√ (log (50001)/ log2)| 
┐ 

         = 
┌

 0 .3950907406
┐ 

         = 4   
Thus, by exchanging 4 public keys one can generate  
as many as 65535 shared keys, may be not all distinct. 
 
 
 
2.4. Comparison between MSK-m and D-H repeated m-
times and the Polynomial Time Complexity of MSK-m 
 
First observe that  
i. To generate -1 shared keys in D-H technique it 
requires -1 rounds and proposed technique (MSK-m) 
requires single round 

ii. To generate -1 shared keys it requires interchange of 
2( -1) messages in D-H technique and 2m messages in 
MSK-m. 
iii. To generate -1 shared keys it requires 22(  -1) 
exponential operations in D-H technique and MSK-m 
requires 2m2 +2m. 
iv. To generate  -1 shared keys it requires no 
multiplications and MSK-m requires 2(2 -1 (m2-2) +1) 
v. The time complexity of D-H is 

                     TD-H(m) = Ce2
2 (  -1) = O( ) 

 
Where Ce denotes time needed for execution of one 
exponential operation. 
So, D-H possibly has non polynomial (exponential) time 
complexity. Hence, it requires more time for execution. 
Since multiplications are very less expensive than 
exponentiation, for time complexity we consider 
exponential operations and hence the time complexity of 
MSK 
 
                      TMSK-m(m) = Ce(2m2+2m.) =O (m2 ) 
 
whereCe denotes time needed for execution of one 
exponential operation.  
Thus, MSK-m has polynomial (quadratic) time complexity. 
So it requires less time for execution than D-H. 
 

 
 
2.5. Security of the proposed technique 
 
We consider DDH assumption for the security of the shared 
keys generated using the Group-DH technique. For this we 
assume large finite cyclic groups that hold DDH assumption 
(Cf. [5]), and it is widely believed that there exist such 
groups for which DDH is intractable. For instance, let p, q 
and g be publicly known, where p and q are large primes 
and p = |G|= 2q+1, and g is the generator of a subgroup 
QRp of Zp* and q =|QRp|. If the participants choose 
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Total number of 
shared keys 
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their private keys from Zq = {0, 1, 2. . . q -1}, then an 
adversary cannot distinguish between the random keys 
in QRp and the keys that are generated by DH 
technique. 
In what follows, we recall some material from Zheng-
Manz-Foss-Chen[7]. 
 
DDH assumption: 
G is a finite cyclic group and g is a generator.  
Given ( ga, gb, gab) and ( ga, gb, gc) for random a, b, c  [1, 
|G|], no efficient algorithm can decide that c = ab in G. In 
other words, the value gab is indistinguishable in polynomial 
time from a random number of G. 
Using the DDH assumption, if K1 and K2 are random 
numbers and PKi for i = 1, 2 are the corresponding public 
values, then the shared value K = PK1 exp K2 = PK2 exp 
K1using two-party secure group key exchange is 
indistinguishable in polynomial time from a random value, 
where exp is an exponentiation operation. From the security 
point of view, the above assumption is very strong and 
many secured practical cryptographic systems designed are 
based on it. The present paper also follows this assumption 
to generate secured multiple two-party shared keys. 
Now we make the following Proposition. 
 
 
2.5.1 Proposition: 
m2 two-party shared keys k1, k2, k3……km

2(base keys) 
derived in the application of the basic DH technique are 
indistinguishable in polynomial time from random numbers. 
 
Proof: Since each of the m2 shared keys is basically a D-H 
style key and for D-H shared key the proposition is true, our  
Proposition follows. 
Corollary 1:  
 The extended  -1-m2 shared keys generated by 
multiplying the m2 base keys in different combinations are 
also indistinguishable in polynomial time from random 
numbers. 
For a communication, the participants must agree upon a 
particular key. One method for the selection of a shared key 
is shown below. 
 
2.6 Selection of shared key 
 
Now that the proposed extension can generate multiple 
shared keys, it is necessary for us to be able to select a key 
for a session. Here we suggest that one can follow a method 
similar to that in the well known Merkle’s puzzle which is 
recalled below: 
A party generates n messages each with having a different 
puzzle number and a secret key number and sends all the 
messages to the other party in encrypted form. Note that a 
different 20 bit key is used for encryption of each message. 

The other party chooses one message at random and 
performs brute-force attack to decrypt it -although it needs a 
large amount of work, it is still computable. It then encrypts 
its message with the key thus recovered and sends it to the 
first party along with the puzzle number. Since it knows the 
puzzle number, it thus identifies the key and decrypts the 
message.  
Similarly, in order to select a key out of -1shared keys, 
one party generates a message comprising a shared key and 
a puzzle number. After encrypting it either with the smallest 
or largest key of the shared keys generated, it is sent to the 
other party. The message is easily decrypted as the recipient 
knows all keys and the (shared key, puzzle number) pair is 
recovered. The party then either sends the puzzle number 
alone or an encrypted message along with the puzzle 
number to the first party, where the message is encrypted 
with the shared key found. Since the first party knows the 
puzzle number, it therefore identifies the session key and 
can decrypt the message. For subsequent changes, the 
present session key may be used to encrypt a shared key at 
one end, and it is decrypted at the other end to obtain the 
new session key. 
Conclusions: Since the D-H technique is simple and easy to 
implement and since MSK-m uses only the D-H style for 
shared key generation, MSK-m is also easy to implement. 
Further, using the lower and upper bounds for m and N (Cf. 
1.2 and 1.3), the security levels can be increased in SDT 
with relatively lesser operational overhead (Cf.1.4). 
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