
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010 
ISSN (Online): 1694-0784 
ISSN (Print): 1694-0814 
 

 

17

Qualitative analysis of periodically forced nonlinear oscillators 
responses and stability areas in the vicinity of bifurcation 

cascade  

Nizar JABLI1,  Hedi KHAMMARI2  and  Mohamed Faouzi MIMOUNI3 
 

 1 Electrical Engineering Department, National Engineering School of Monastir 
Monastir, Ibn al Jazar 5019, Tunisia  

 
2 Computer Department,  Faculty of Computer Science, Taief University  

Taief, Arabi Saoudi  
 

3 Electrical Engineering Department, National Engineering School of Monastir 
Monastir, Ibn al Jazar 5019, Tunisia 

 
 

Abstract 
Bifurcation theory is the mathematical investigation of 
changes in the qualitative or topological structure of a 
studied family. In this paper, we numerically investigate 
the qualitative behavior of nonlinear RLC circuit excited 
by sinusoidal voltage source based on the bifurcation 
analysis. Poincare mapping and bifurcation methods are 
applied to study both dynamics and qualitative properties 
of the periodic responses of such oscillator. As 
numerically illustrated here, a small variation of amplitude 
or frequency of the driver sinusoidal voltage may involve 
qualitative changes for witch the system exhibits fold, 
period doubling and pitchfork bifurcations. In fact, the 
presence of these kinds of bifurcation necessitates an 
examination of the role of these singularities in the 
dynamical behavior of circuit. Particularly, we 
numerically study the qualitative changes may affect 
number and stability of the periodic solutions and the 
shapes of its basins of attraction associated while 
approaching the neighborhood of a particular bifurcation 
structure known as isoordinal lips cascade. Using a 
numerical scanning technique, higher harmonic domains 
which can prove the existence of such cascade of 
bifurcation are numerically computed. Furthermore, we 
report on some numerical simulations of bifurcation 
singularity and basins attractor which are useful tools for 
understanding and illustrating these effects. 
 
Keywords: Qualitative behavior, bifurcations cascade, fold, 
flip, pitchfork, higher harmonic, Attraction basins 

1. Introduction 

Nonlinear dynamical systems undergo abrupt qualitative 
changes when crossing bifurcation points. Multistability is  
one of the most important properties of nonlinear systems. 
One can have two or more stable states for the same 
system parameters and for different initial conditions set.  
For a more exhaustive study of nonlinear system responses, 
it is compulsory to identify the singularities of the 
parameter plane (bifurcations, chaos, ...) and the 
singularities of the phase plane (fixed point, cycles, 
invariant closed curve, attraction basins, ...). The 
singularity considered here is the attraction basins 
associated to the attractors which coexist for same 
parameters of the RLC circuit. The influence domain or 
stability domain or basin of an attractor   is the open set 

( )D  of the points nX  such that the consequent of all nX  

approach asymptotically   as n  . The influence 

domain (or basin) of *X is the set of points 0X  giving the 

convergence of nX  towards *X . The attraction basin may 

be either all in one block, or made up of finite or infinite 
number of disjointed parts with only one accumulation 
point [1]. The structure of a stability domain can undergo 
a global bifurcation changing the connexity property of 
this area to non-connexity or vice versa.  Previous studies 
have investigated global bifurcations that change the 
structure and properties of attraction basins and their 
boundaries for both two-dimensional diffeomorphisms [1], 
[2] and endomorphisms [3]. When a cycle is locally 
asymptotically stable, it is possible to enquire about its 
influence domain, i.e. about the largest admissible initial 
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perturbation  or more exhaustively, about the set iX  of 

points nX  such that the consequents of all nX  approach 

asymptotically and successively the k points of the cycle 
as n  .  
The forced RLC circuit with nonlinear inductor exhibits a 
wide variety of nonlinear phenomena, such as the jump 
and hysteresis, bifurcation and chaotic states, the 
frequency entrainment, harmonic and subharmonic 
oscillations, quasi-periodic behavior [4],[5]. A nonlinear 
forced oscillator containing a ferromagnetic core with 
saturation and hysteresis or an other Hard Characteristics 
exhibits a complex bifurcation phenomena near points of 
resonance [6], [7]. The Duffing Van der Pol oscillator of 
[8] shows a broad spectrum of dynamic behaviors, both 
chaotic as well as periodic. Such a considered circuit 
composed of a resistor, an inductor and a capacitor is 
described by two dimensional dynamical system modeled 
by the following second-order nonlinear ordinary 
differential equation: 
 

 ( , ) ( ) ( )x x x f x h t     (1) 

 
A particular bifurcation structure namely an isoordinal 
cascade of bifurcations, studied in former works [9-11], 
include local bifurcations of codimension one such as fold, 
flip and pitchfork and bifurcations of codimension 2 such 
as cuspidal points which correspond to the intersection of 
two fold curves. The symmetry property of the circuit is 
introduced by the Pitchfork bifurcation, it was stated that a 
lip structure which is a combination of two fold curves 
related in the edges by cusp points are surrounded by 
pitchfork bifurcation curve and is associated to an even 
higher harmonic predominance. The aim of this work is to 
study the qualitative changes of the attraction basins of 
symmetrical attractors in proximity of certain bifurcation 
points. The rest of the paper is organized as follows. In 
section 2, we present an overview of the governing 
differential equations of a nonlinear RLC circuit excited 
by sinusoidal voltage source. Section 3 is devoted to a 
reminder of some basic results on singularities in a phase 
plane and bifurcation sets in parameter plane. In section 4, 
the analysis of higher harmonic of 2 - periodic solutions 
is examined. Finally, section 5 presents the main results of 
the paper. We numerically compute bifurcation diagrams 
and we report the effects of the structure of singularities 
on the attraction basins of stable attractors.  

2. RLC circuit equations  

Fig. 1 shows typical RLC circuit modeled as a series 
combination of a resistor R, inductor L and capacitor C. 

Such inductor is characterized by a single valued 
characteristic (i.e. without hysteresis). The current i  is 

approximated by a cubic polynomial 3

1 3
,i a a    

1 3
0, 0a a  , where   is the magnetic flux and 

1
a ,

3
a are 

constants. 

 

Fig. 1 Typical series RLC circuit. 

The system is driven by a sinusoidal voltage source. Using 
the notation in Fig. 1, the fundamental equation for the 
circuit is described by: 

 

 
1

. ( ) ( ). ( )
d

R i t i t dt e t
dt C


    (2) 

* ( ) sin( )me t e t  is a sinusoidal voltage source, were     

  is the excitation frequency and me  is the amplitude. 

*  
1

( ) ( ).u t i t dt
C

   is the voltage across the capacitor. 

We normalize the state variables and the time variable as: 
( )x t , ( )y u t  and t  . Rewrite equation (2) as 

follows: 
 

 

3

3

1 3

1 3

1
( .sin ( . . ) )

1
( . . )

m

dx
e R a x a x y

d

dy
a x a x

d C


 

 

   

 







 (3) 

 
We can easily verify that (3) is invariant to the 
transformation ( , , ) ( , , )x y x y      . 

3. Reminder of some basic results 

This section summarizes some basic results about the 
singularities of nonlinear systems described by second 
order nonlinear differential equations. These results will 
be useful for the analysis of the temporal behavior of a 
Duffing type equation modeling an RLC circuit with 
nonlinear core inductor. The Poincare map is usually 
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studied to understand the nature of non linear oscillatory 
systems responses in the phase space and their bifurcations 
in the parameter space. A complete treatment of the 
bifurcation types and their computation methods may be 
found in [12]. 

3.1 Phase plane singularities  

The two-dimensinal differential equations system (3) can 
be rewritten as the following general expression: 
 

 2 2( , , ) ; , ,
dX

f X X
d

   

     (4) 

Where  ,
T

X x y  denotes the state vector,  , me   

is the parameters vector and f  is supposed to be C and 

periodic of period 2 . 
A classical technique for qualitatively investigating the 
system dynamics controlled by the parameters vector 

 , me  is based on the Poincare map T . 

This map, denoted T , is derived from equation (4) by 

merely sampling the continuous phase trajectories 
at 2t  . This geometrical method, called Poincare 
section, permits to give rise to a discrete trajectory 
computed implicitly through numerical integration of the 
differential equations system. 
 

By using the solution 0( , , )t U   of (4), with an initial 

condition given by 0 0( )X t U  , the Poincare mapping is 

defined as: 
 

 2 2

0 0 0: ; ( 2 , , )T U t U       (5) 

 

Where   2, me    denotes the system parameters. 

Thus the analysis of the discrete dynamical system 
properties defined by the relation (5) via studying the 

singularities of T  enables to perform a more complete 

description of the original system behavior defined by the 
relation (4). Indeed, a periodic solution of (4) of period 
2  is associated to a periodic point namely a fixed point 

of T  . While a k-order cycle (made up of k points) will 

correspond to a 2k  periodic solution of (4), then 
U satisfies the following equation: 
 

 ( ) 0kT U U    (6) 

 

In this paper only fixed point singularities type of T  and 

their bifurcations will be considered. 

3.2 Parameter plane singularities 

Stability of periodic solutions is obtained by examination 
of Jacobian of the system at these solutions. Therefore it is 
possible to show the dynamical behavior around these 
points and make qualitative studies without having to 
solve the system equations. Thus the stability nature of a 
periodic point U is known from the roots S  of the 
following characteristic equation: 

 
( )

. 0
kdT U

S I
dU

    (7) 

These roots, also called the multipliers, are denoted by 1S  

and 2S  ( 1 2S S ). Three topologically points are 

defined as follow: if 1 1S   the point is asymptotically 

stable, if  1 21S S   the point is unstable and is called 

saddle and if 2 1S   the point is completely unstable. 

At the particular value 1S  , we have a critical case of 

lyapunov, a bifurcation may occur. The following local 
bifurcations are to be identified in the equation (3). 
 
* The tangent bifurcation (or fold): 
 
This type of bifurcation occurs when one of the multipliers 

of a fixed point (or a cycle) 1
p

S   , (p = 1 or 2), this 

bifurcation is schemed in this paper as follows: 
 

( , ) ( , )cycle k j a cycle k j r    

 
Where   is used to indicate the non existence of the two 
cycles before the bifurcation point. Whereas cycle (k, j) 
denotes a k-order cycle, j characterizes the order of 
iterations of the points of the cycle. Finally, we note that 
“a” (resp. “b”) is attributed to attractive cycle (resp. 
repulsive cycle). In the following discussion the curve 

associated to this type of bifurcation is denoted by 
0( )

j

k . 

 
* The doubling period bifurcation (or flip): 
 

This type of bifurcation happens when 1
p

S   , (p = 1 or 

2), this bifurcation is schemed in this paper as follows: 
 

( , ) ( , ) ( .2, )cycle k j a cycle k j r cycle k j a   

( , ) ( , ) ( .2, )cycle k j r cycle k j a cycle k j r   

 
In a parameter plane the curve of bifurcation flip is 

denoted by j

k  
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* Pitchfork bifurcation: 
 

This type of bifurcation occurs when 1
p

S   , (p = 1 or 2) 

after a k-order cycle crosses a Pitchfork bifurcation, the 
stability of such a cycle is changed and two other k-order 
cycles with different stability occur. This bifurcation is 
presented here as follows: 
 

( , ) ( , ) ( , ') ( , '')cycle k j r cycle k j a cycle k j r cycle k j r  
 

( , ) ( , ) ( , ') ( , '')cycle k j a cycle k j r cycle k j a cycle k j a  
 

3.3 Attraction basins properties 

The trajectory of a given system, in state space will head 
for some final attracting region, or regions, which might 
be a point, curve, area, and so on. Such an object is called 
an attractor for the system, since a number of distinct 
trajectories will be attracted to this set of points in the state 
space. Indeed the non-unicity of these attractors led 
mainly to characterize each stable state by its associate 
stability domain (or attraction basin). 
These domains include the open sets of the points in the 
initial conditions space for which the solutions of the 
differential equation converges towards this solution this 
stable state. Thus, an attraction basin (D) is a stability 
domain of an attractive set (or attractor) having a border 
(F) see Fig. 2). The analysis of stability domains (D) 
properties of these attractors and their borders (F) 
(connexity, complex shape, fractal,) for two dimensional 
maps was undertaken in several works [1], [13], [14]. 
 
 
 

 
 

Fig. 2  Connectedness of stability domains of fixed point                         
a) connected attraction basin b) disconnected basins 

 
A Poincare geometrical transformation T associated to a 
continuous dynamical system can be a diffeomorphism 
(invertible) or an endomorphism (non invertible, non 

unicity of 1T  ). An attraction basin is connected (see Fig. 

2) if the punctual transformation is invertible otherwise it 
is disconnected and made of a finite or infinite domains 
[14], the attraction basin can also be connected but 
including holes, it is the case of multiply connected basins 
[1]. In the case of our studied circuit shown in the section 
2, we analyze in particular the multistability of periodic 
attractors and the basin of attraction structure in phase 
space and its dependence with the bifurcation points. 
 
4. Higher harmonic spectral analysis  
 
In former studies [9], [10], [15] it had been shown that the 
2  periodic solutions of a nonlinear differential 
equation governing the behavior of the considered RLC 
circuit with core inductor can be classified according to 
their Fourier spectra. In an ordering based on line 
amplitudes of a frequency spectrum in descending order, 
this means that a rank-m harmonic (m > 1) has the second 
place, and the first (i.e. the greatest amplitude) in the case 
of full predominance. It is shown that the study of the 
higher harmonic predominance in a parameter plane leads 
to conclude about the existence of a certain bifurcation 
structure namely isoordinal cascade. Such a bifurcation 
structure is established in one cell of parameter            

plane  , me . 

Numerically, we consider a  , me  parameter plane, the 

spectral ‘scanning’ consists in dividing the plane in small 
pixels having the same width   and the same height 

me , then compute the Fourier expansion of  2 period 

solution to identify the corresponding order of the 
predominant higher harmonic. And finally the pixel takes 
the color assigned to the predominant higher harmonic of 
the oscillatory attractor (or fixed point). The numerical 
computed domains of the higher harmonic predominance 
are shown in Fig. 3. 
 

 
Fig. 3 Higher harmonic domains in  , me - plane 
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As previously reported in [15], the domains shown in 
Fig.3 can be used to proof the identification of an 
isoordinal lips cascade embedded in the different colored 
cells. 

5. Numerical simulations of the qualitative 
behavior of RLC circuit 

From the whole structure of isoordinal cascade of lips 
extracted from [9], and numerically illustrated in Fig. 4, 
we consider a lip structure associated to the fourth higher 
harmonic predominance Fig. 4. This lip structure, made of 

two fold bifurcation curves 
0

4 1

(1) and 
0

4 1'

(1)  joined at 

their extremities in two cuspidal points 4 1

1C  and 4 1'

1C , is 

surrounded by a Pitchfork bifurcation 
0

4 1

(1) . This means 

that we have two symmetric lips sketched out in the 

foliation structure of Fig. 7. A flip curve 4 1

1  is also 

related to such a symmetric fold structure. 
 

 
 

Fig. 4  Isoordinal lips cascade and associated flip and pitchfork curves 

 
 
Let us consider a point chosen between two fold 
bifurcation points A1 and A1’ see Fig. 8. Actually the 
vertical cross-section revealed 7 attractors of which three 
are unstable (M2, M4 and M6) and four are stables (M1, 
M3, M5 and M5). We are concerned with attractive 
periodic solutions. In Fig. 9 the time series, phase 
trajectories and spectra of these attractors are presented. 
We note that in the phase trajectories a small red point is 
used to identify a fixed point which is the accumulation 
point in attraction basin of this attractor. The immediate 
basins of stable attractors M1, M3, M5 and M7 will be 
numerically illustrated in this section. The lip structure 
related to an even higher harmonic predominance chosen 

below is aiming to have four different stable attractors. 
Each of these attractors has its stability domain which will 

be estimated in the phase plane  ,x y . 
 

 
 

Fig. 5  The lip bifurcation structure (
4L ). 

 

 

 
 

 
 

Fig. 6  Detailed bifurcation diagram of W-section 
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We shall consider in this section two cross-sections:  (W)-

section, for   = constant and (E)-section, for me = 

constant in two different regions (Z1) and (Z2) 
respectively as in Fig. 5. Detailed diagrams of such cross-
sections are given in Fig. 6 and Fig. 7. (W)-section 

corresponds to relatively small values of   and me , and 

includes a set of points ( , me ) bounded by two fold 

bifurcation points. This section is relatively far from flip 
bifurcation curve and includes only fold bifurcations. 
 
The second cross-section namely (E)-section is chosen in 
order to analyze the effect of both of fold and flip 
bifurcation on attraction basins shapes and sizes, this 
section contains two tangent bifurcations and a flip 
bifurcation. Also, we recall from the section 2, that the 
axis of our phase plane are defined by the variable states  

( )t  and ( )v t in the x-axis and in the y-axis respectively. 

 
 
 

 
 
 
 

 
 
 

Fig. 7  Detailed bifurcation diagram of E-section. 

 
 

 

Fig. 8  Foliation of the bifurcation diagram. 

5.1 W-section attraction basins 

As mentioned above this section intersects the lip structure 
4L  in two fold bifurcation points ( 50, 112.959me   ) 

and ( 50, 128.256me   ). Choosing two points from 

W-section, for a given fixed value of 50   and for a 

couple of values 113.261me   and 116.193me  , the 

attraction basins are numerically computed by using the 
phase plane ‘scanning’ technique. The proposed method 

consists in dividing a phase plane cell  ,Min Max    

 ,mMin mMaxe e  in small pixels having the same 

dimensions, width x and height y  . The basin is 

computed in the obvious way by numerically integrating 
the differential equation starting from the set of initial 
conditions on the obtained 400*400 size grid, and in each 
case, after allowing the transient to decay sufficiently, 
deciding which solution has been reached. And finally 

each one of the 416.10 pixels in the figure takes the color 
assigned to the attractive periodic solution (or attractor) 
given by considering the initial point in it. 
 
The details of the intersection of W-section with the lip 
structure is given in Fig. 5, we have two different fold 
bifurcation points: f1, a1. Since the parameter space is 
foliated [16] the two fold curves including f1 and a1 
respectively are the boundaries of three different sheets , 
two stable sheets related through a third unstable one. This 
kind of bifurcation feature exhibits phenomena of jump 

and hysteresis. At point fc2 ( 50, 97.785me   ) and for 

increasing values of me , a stable fixed point undergoes a 

pitchfork bifurcation becoming unstable and generating 
two symmetric stable fixed points. 
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Fig. 9  Spectra and phase trajectories of stable attractors. 

The phase trajectories of stable attractors, which are 
periodic solutions of original differential system having 
the period of the forcing sinusoidal input (normalized 
to 2 ), are given in Fig.10.  
 

 
 

Fig.10. Phase trajectories of stable attractors. 

 
The attraction basins of four stable attractors which 
corresponding to the same system parameter 

( 50, 113.261me   ) is given in Fig. 11, A1, A2, A3 

and A4 are the accumulation points of such stability 
domains. 

 
 

Fig.11 Attraction basins in proximity of fold bifurcation                         
(w= 50, em = 113.261199). 

. 
It is obvious to remark that the attraction basins of A2 and 
A4 are smaller compared to those of A1 and A3, this is 
due to the fact that the symmetric attractors A2 and A4 are 
very close to a fold bifurcation. Picking another point of 
W-section, relatively far from the two bifurcation points 

( 50, 116.193me   ), the obtained basin is shown in 
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Fig. 12. It is worth noting that the stability domains sizes 
of A2 and A4 increase, thus these domains are vanishing 
in vicinity of bifurcation points. The attraction basins are 
seemingly scrolled around a central part including 
accumulation points. 
 

 
 

Fig.12  Attraction basins of attractors relatively far from fold bifurcation 
(w = 50, em = 116.193). 

5.2 E-section attraction basins 

The E-section includes 2 folds and a flip bifurcation, in 
this particular case we choose two particular points 

( 3545.989, 14.10me   ) nearby a fold bifurcation and 

( 3557.629, 14.10me   ) close to both a flip and fold 

bifurcation, in the latter case there is no contact between 
the two bifurcation points because they are not in the same 
sheet. For the first case, two attractors M1’ and M7’ are in 
proximity of fold bifurcation Fig. 13, that is why their 
stability domains are greatly reduced.  
 

 
 

Fig. 13 Attraction basins in proximity of fold bifurcation                      
(w= 545.989, em = 14000). 

 

Whereas, when the four attractors are altogether closer to 
bifurcation points (two attractors close to fold bifurcation 
and two others are close to flip bifurcation) their attraction 
basins have relatively important sizes Fig. 14. 
 

 
 

Fig.14  Attraction basins in proximity of 2 bifurcations points 

( 557.629, 14000me   ). 

6. Conclusion 

We have presented a combined qualitative and numerical 
analysis of the global behavior of a nonlinear RLC circuit 
by investigating both the dynamic responses of nonlinear 
model and the bifurcation structure in the amplitude-
pulsation parameter plane. An analysis of particular 
bifurcation structure known as isoordinal lips cascade is 
treated. Especially, we have numerically illustrated the 
effect of a parametric singularities such as fold, flip and 
cuspidal bifurcation on a phase plane singularity namely 
attraction basins of stable attractors. Some properties of 
these stability areas, however, began to change while 
approaching the neighborhood of these kinds of 
bifurcation points. In addition, several basic properties 
such as multistability and symmetry of the proposed 
oscillator are carried out.  

Appendix 

Using our bifurcation computing algorithms developed in 
FORTRAN, the numerical results in this work are 
obtained with respect to the following values of RLC 
circuit parameters.  

Table 1: RLC circuit parameters 

R [  ] 20 

C [ F ] 1  

a1 0.015  
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a3 0.365  

Acknowledgments 

This work was supported by Networks and Electrical 
Machines Research Unit (RME). Directed by Professor 
Rachid DHIFAOUI, RME is well established in INSAT-
Tunis, Tunisia.  
  
References 
[1]  C. Mira, chaotic dynamic from the one dimensional 

endomorphism to the two dimensional diffeomorphism, 
World Scientific, 1987. 

[2]  Helena E. Nussea and James A. Yorkeb, Bifurcations of 
basins of attraction from the view point of prime ends, 
Topology and its Applications, Volume 154, No. 13, July 1, 
2007, pp. 2567-2579. 

[3]  Wanda Szemplinska-Stupnicka and Elzbieta Tyrkiel1,  
Effects of Multi Global Bifurcations on Basin Organization, 
Catastrophes and Final Outcomes in a Driven Nonlinear 
Oscillator at the 2T-Subharmonic Resonance, Nonlinear 
Dynamics, Vol. 17, No. 1, September 1998, pp.  41--59. 

[4]  Michele V. Bartuccelli, Jonathan H.B. Deane and Guido 
Gentiley, Bifurcation phenomena and attractive periodic 
solutions in the saturating inductor circuit, Proceedings of the 
Royal Society A, vol. 463  No. 2085 , September 8, 2007, pp.  
2351-2369. 

[5]  Munehisa Sekikawa, Naohiko Inaba, Tetsuya Yoshinaga and 
Hiroshi Kawakami, Bifurcation structure of fractional 
harmonic entrainments in the forced Rayleigh oscillator, 
Electronics and Communications in Japan, Part 3, Vol. 87, 
No. 3, 2004, pp. 30-40. 

[6]  Paul Bryant and Carson Jeffries, Bifurcations of a Forced 
Magnetic Oscillator near Points of Resonance, Physical 
Review Letters, Vol. 53, No. 3, July 16, 1984. 

[7]  Kenjiro Yamaguchi and Genji Yorimitsu, Bifurcation 
Phenomena of a Forced Self-Oscillatory System, Electronics 
and Communications in Japan, Part 3, Vol. 82, No. 9, 1999. 

[8]  J.D Jeng, Y. Kang and Y.P. Chang, An Alternative Poincare 
Section for Steady-State Responses and Bifurcations of a 
Duffing-Van der Pol Oscillator, WSEAS Transactions on 
systems}, Vol. 7, No. 6, June 2008. 

[9]  H. Khammari, C. Mira and J.P. Carcasses, Behavior of 
harmonics generated by a Duffing type equation with a 
nonlinear damping: partI, 12th IEEE International 
Conference on Electronics, Circuits and Systems ICECS 
2005, 11-14 Dec, Gammarth, Tunisia, 2005. 

[10]H. Khammari and M.Benrejeb, Tangent bifurcation in 
doubling period process of a resonant circuit's responses, 
IEEE International conference on industrial technology ICIT 
2004, Hammamet, Tunisia, December 8-10, 2004. 

[11]C. Mira, H. Kawakami, M. Touzani-Qriouet, Bifurcations 
structures generated by the non-autonomous duffing equation, 
International Journal of Bifurcation and Chaos, Vol. 9, No.7, 
1999, pp. 1363-1379. 

[12]H. Kawakami, Bifurcation of periodic responses in forced 
dynamic nonlinear circuits: computation of bifurcation 

values of the system parameters, IEEE transactions on 
circuits and systems, 1984, vol. 31, No. 3, pp. 248-260. 

[13]Igor Gumowski, C. Mira, Recurrence and Discrete Dynamic 
Systems, Springer-Verlag, August 1980. 

[14]C. Mira, D. Fournier-Prunaret, L. Gardini, H. Kawakami and 
J.C. Cathala,  Basin bifurcations of two-dimensional 
noninvertible maps: fractalization of basins,  International 
Journal of Bifurcation and Chaos in Applied Sciences and 
Engineering, vol. 4, No. 2, 1994, pp. 343-382. 

[15]H. Khammari, J.P. Carcasses and M.Benrejeb, Bifurcations 
of periodic solutions and higher harmonic oscillations in the 
RLC-circuit, CESA 98, Tunisia, April 4-5th, 1998. 

[16]C. Mira, J. P. Carcasses, C. Simo, J. C. Tatjer, Crossroad 
area-spring area transition. (II) Foliated parametric 
representation, International Journal of Bifurcation and 
Chaos, vol. 1, No. 2, 1991 pp. 339-348. 

 
 
 
Nizar JABLI, PhD Student. He was born in Gafsa in 1977, Tunisia. 
He received the engineer diplomat and master degree from 
National Engineering School of Sfax and Monastir, Tunisia, 
respectively, in 2003 and 2005. He is currently working toward the 
PhD degree at Monastir University, Tunisia.  His research interests 
are in the analysis and control of complex nonlinear electrical 
circuits and power systems:  bifurcation and chaos theory in 
electrical engineering applications.  
JABLI N., is a Member, IEEE and a member in RME Research 
Unit. 
 
 
Hedi KHAMMARI, PhD. He was born in Kairouan, Tunisia in 1963. 
He received the engineer diploma and the Master degree from 
National Engineering School of Tunis in 1988 and 1990 
respectively. He received PhD in Electrical Engineering in 1999. 
He is currently associate Professor at Taief University, Arabi 
Saudi. His research interests are mainly in the area of nonlinear 
dynamics and the application of chaos theory in different fields 
namely communication, electric systems and bioinformatics. 
 
 
Mohamed Faouzi MIMOUNI, University Professor. He was born in 
Siliana, Tunisia in 1960. He received PhD in Electrical Engineering 
in 1997. He is currently Professor at Monastir University, Tunisia.  
His research interests are in the control of electrical asynchronous 
machines and power systems. He is the responsible of the RME-
Monastir unit of search (Monastir section). 
 


