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Abstract 

In this paper we have given our proposed approximation methods 
for similarity search in large temporal databases using wavelet 
transformation based featured signals and time warping distance 
algorithm. Our main goal is to propose efficient methods to 
speed up the mining of matched sequences especially when the 
sequences are of random lengths and traditional distance metrics 
like Euclidean distance fail to achieve the desire goals. We 
proposed two methods for truncation of databases for optimizing 
search procedures for similarities using the concept of wavelet 
based featured time warping. In our  first model, we utilize the 
maxima, minima and average features of wavelet based 
compressed signals and  in second model, features of wavelet 
transformation using average of approximation coefficients at the 
coarsest scale and maxima of maxima and minima of minima of 
detail coefficients at all scales. We show by carrying out 
extensive experiments that our proposed methods are very 
effective and ensure the nonoccurrence of false dismissals and 
minimal false alarms with least compromise over accuracy. 
  
Keywords: Wavelets, Multiresolution analysis, Dimensionality 
reduction, Network Traffic, Time warping, Data mining  

1. Introduction 

During the last few years, explosion of information has 
created extremely large databases and is piling up large 
mountains of data on daily basis. At the same time highly 
sophisticated machines with immense computational 
facilities have made the things easier for data manipulators 
and decision makers to obtain optimum information out of 
this data flood. This also gives emergence to a new field of 
study called data mining. Data mining is defined to mine 
out information from huge databases for end users to make 
use of it for decision making process. In the field of data 
mining, the efficient retrieval of time based information 
hidden in mountains of data is of great importance.  
 

In past few years due to high speed computers, time series 
data has once again gained importance in financial 
analysis, marketing, data mining, data warehousing, 
geology, computer and network engineering etc. With this 
growing demand of time series data, there is increasing 
demand to support fast retrieval of time series data based 
on similarity measurement. In order to find similarity 
between two time series, we have to define similarity 
measurements during the query process. There are number 
of distance metrics like Euclidean, Mahalanobis, 
cityblock, Minkowski, cosine, correlation and many others 
which have been used for similarity search in previous 
literature [1] [5]. In this chapter we use the dynamic time 
warping distance measure, which we discuss at later 
stages. The efficient and fast retrieval of similar time 
series in huge databases is only possible with feature 
extraction or dimension reduction of data [2] [3] [4]. There 
are number of transformations available like singular 
value decomposition (SVD) [6], piecewise aggregate 
approximation (PAA), fast Fourier transformation (FFT) 
for dimension reduction [7] [8]. We used discrete wavelet 
transformation (DWT) for compression and feature 
extraction due to its added advantages over contemporary 
transformations [9] [10]. 
 
The remainder of this paper is structured as follows in the 
next section, we describe how the data can be decomposed 
into multi-resolution levels using a robust smoother-
cleaner DWT and reconstructed with outlier patches 
removed using dimension reduction technique. Section 3 
describes the dynamic time warping technique. In section 
4, we give our proposed technique and perform extensive 
experiments on simulated synthetic self similar network 
traffic signals using wavelets and time warping for 
arbitrary length signals supporting index based techniques. 
Section 5 contains our concluding remarks. 
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2. Dimensionality Reduction using Wavelets 

There are various techniques, which are being used for 
dimension reduction. The dimension of a finite 
dimensional vector space ‘ V ’, denoted by  Vdim  is 

defined to be the number of vectors in a basis for ‘V ’ 
where ‘V ’ is any vector space. The basic concept of basis 
function is that if ‘ V ’ is any vector space and 

 nvvvS 21,  is a set of vectors in ‘V ’, then ‘ S ’ is 

called a basis for ‘V ’ if the following conditions hold 
 

(a) ‘ S ’ is linearly independent i.e. 

02211  rrvkvkvk   where rkkk 21,  

are scalar quantities. 
(b) ‘S’ spans ‘V’ 

 
The basic idea behind the dimension reduction is that in 
most types of data the energy of the time series signal is 
concentrated in some part of it and rest of the signal does 
not significantly contribute towards energy and considered 
as noise. Transforming each sequence of data and keeping 
only subset of transformed coefficients performs the 
dimension reduction.  
Briefly, using wavelet transforms, a network traffic signal 
can be decomposed into a cost-effective countable set of 
basis functions at different time locations and resolution 
levels. Unlike Fourier analysis, wavelet analysis captures 
the more localized behavior in a signal. Trigonometric 
functions serve as functions on which a Fourier 
decomposition of time series data is based in the frequency 
domain. In contrast, wavelet analysis is characterized by 
basis functions that are not trigonometric and that have 
their energy concentrated within a short interval of time. 
These 'small waves', or wavelets, are defined over the 
square integrable functional space, L2(R), and they have 
compact support. It is the property of compact support that 
enables wavelet analysis to capture the short-lived, often 
momentary components of data that occur in shorter time 
intervals [11] [12]. Wavelets belong to families which 
provide the building blocks for wavelet analysis. Just as 
sine and cosine functions are functional bases onto which 
we project data to extract information belonging to the 
frequency domain, wavelet functions are functional bases 
that allow for extraction of information available in both 
the time and frequency domains. A wavelet family comes 
in pairs, a father and mother wavelet. The father wavelet 

 t  represents the smooth and low frequency part of the 

signal, while the mother wavelet  t  captures the detail 

or high-frequency component.  
A continuous function  tf  can be approximated by the 

orthogonal wavelet series given by  

     

   tdtd

tdtstf

k
k

kkJ
k

kJ

kJ
k

kJkJ
k

kJ

,1,1,1,1

,,,,












 
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where J  is the number of multi-resolution components or 
scales and k ranges from one to the number of coefficients 
in a multi-resolution component.  

The coefficients kkJkJkJ ddds ,1,1,, ,,   are the wavelet 

transform coefficients, while  tkJ ,  and  tkJ ,  are 

the approximating father and mother wavelet functions 
respectively. The wavelet approximation to  tf  given by 

Eq. (1) is orthogonal since the basis functions   and   

are orthogonal by construction [11] [12]. Wavelet 
functions usually do not have a closed functional form. 
After imposing desired mathematical properties and 
characteristics, they are generated through dilation and 
translation according to the following normalized   
functions.  
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The wavelet transform coefficients measure the 
contribution of the corresponding wavelet function to the 
approximating sum. Consider the set of father wavelet 

functions  t , which span the sub-space 
JV  of L2(R),  

                             tSpanV kJ    

where  

                          
    Zkkttk  ,                      (4)  

It follows that any function in the JV  space can be 

expressed as a linear combination of the father 

wavelets  tk , which span the space. That is  

                      Jk
k

k Vtftatf   ,                  (5)  

If a set of signals based on information set that represents 
the fundamentals can be expressed by the weighted sum 
given by (5), then a set of signals based on more detailed 
information set should be contained in a sub-space, 

jV  

which contains
JV . The detail or higher frequency 

components of the signal are captured by the mother 
wavelets at higher levels of resolution. The subscript j  

that we incorporate into the mother and father wavelets 
represents the level of time resolution and is known as the 
dilation parameter [12]. Recall Eq. (2) for the father 
wavelets where j  is the dilation parameter and k  is the 
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translation parameter that ensures the father wavelets span 
the 

jV  space. For the mother wavelets, Eq. (3) captures the 

extra detail over and above that accounted for by the 
father wavelets at a particular scale or dilation. 

2.1 Multiresolution Analysis using Wavelets 

The multiresolution condition requires that  

                    ZjVV jj  1  

                     0V  

                     RLV 2  

with the orthogonal complement of 
jV  in 

1jV  being the 

subspace, .jW  
jW  is spanned by orthogonal mother 

wavelet functions such that 

        jjj WVV 1       and 

  121
2 WWWWVRL JJJJ     

For a discrete signal   nffff ,, 21  sampled from a 

continuous time signal  tf  , the discrete wavelet 

transform maps the vector f  into a set of wavelet 

coefficients W , which contains the coefficients 
kJs ,

 and 

Jjd kj ,2,1,,  . When the number of observations n  is 

divisible by J2  then the number of coefficients at any 
particular scale depends on the width of the wavelet 

function [11] [12] [13] [14]. At the finest scale 21, 
12

n  

coefficients and for coarsest scale J2 , 
J

n

2
 coefficients are 

required. As the level of resolution descends to the 
smoothest level J2 , the number of coefficients required 
decreases each time by a factor of 2. From the orthogonal 
property of wavelet transforms, it follows that 

             
JJ

nnnn
n

2222 12
   

The detail coefficients kJd ,  give the coarse scale 

deviations from the smooth behavior at scale 2J, which is 
represented by the smooth coefficients. The remaining 
detail coefficients kkJkJ ddd ,1,2,1 ,   capture the 

progressively finer scale deviations from the smooth 
behavior. At a particular level of time resolution j  the 

impact of the information subset on the signal is reflected 
in the number and magnitude of the wavelet coefficients 
and is roughly equal to the sampling interval at that 
resolution level. Information corresponding to finer detail 
in the signal than that at resolution level j  can only be 

incorporated into the signal by considering shorter 
sampling intervals which are associated with higher levels 

of resolution than j . Such information will not contribute 

to approximating the signal at lower levels.  
 
The terms of Eq. (1) are comprised of functions called the 
smooth signal,     tstS

k
kJkJJ  ,,   and the detail signals, 

   tdtD kj
k

kjj ,,   such that the orthogonal wavelet 

series approximation to  tf  is  

         tDtDtDtStf JJJ 11          (6) 

Eq. (6) is known as a multiresolution decomposition of 

 tf  because the terms of different scales represent the 

components of the signal at different resolutions. Just as 

11,,, WWWV JJJ   can be seen as a partition of the 

information set, information decomposition in Eq. (6) 

allows us to reconstruct the signal  tf  based on a subset 

of relevant information at the thj  level of resolution, via 

the approximation, 
                  tDtDtDtStS jJJJj   11  

These approximations range from the smoothest scale or 

lowest level of resolution 2
J 

to finer scales 2,2,2 21  JJ . 

Using the different multiresolution 

approximations      tStStS J,, 21 , we focus on 

different features of the signal. The finer scale 
approximations reveal more details as a result of 
incorporating higher frequency observations and shorter 
time intervals between observations [12] [14]. In this 
experiment we use the wavelets for transformation of data 
using Eq. number (6) and global threshold methods for 
compression and significant features extraction. We utilize 
the features extracted from wavelet based synthesized 
compressed signal and the wavelet based transformed 
coefficients on the bases of their maxima, minima and 
average for our two proposed methods.  

3. Dynamic Time Warping 

There are numbers of distance metrics given in section 1, 
which are available for detecting similarities among series 
in database. In most of the cases, two network traffic 
signals have the same over all shape but do not align in X-
axis. In such cases distance metrics given in section 1 do 
not meet the requirements. In order to find similarities 
between such self-similar traffic we have to align time axis 
of one series or both using the warping technique for 
obtaining better comparison [15] [16] [17]. Dynamic time 
warping (DTW) is the best possible technique to obtain 
such type of warping in two time series. DTW is 
extensively used in data mining, speech recognition, 
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robotics, manufacturing, genetics, network traffic 
modeling and medicines [18] [19] [20] & [21]. 
 
3.1 Dynamic Time Warping (DTW) Algorithm 
 
The classical DTW algorithm is given in figure1. Suppose 
we have two time series 

                         1210 ,,.,  nxxxxx 


 

and    1210 ,,,,  myyyyy 


 

where x  and y  denote the length of vectors, not 

necessarily equal.   jiCmatrix stores the shortest 

cumulative distance from  ixxx ,,, 10   to 

 jyyy ,,, 10   which is the Euclidean distance between 

pair  ji yx ,  plus   jiCmatrix 1  ,   1jiCmatrix  

and   11  jiCmatrix . The time warping distance will 

be     211 ,,  mnmatrixTW yxCyxD


and the shortest 

cumulative distance for each pair of two time series starts 

from pair  00 , yx  to  11 ,  mn yx  will be time warping 

path in mn  matrix. 
 
Algorithm 1: Dynamic Time Warping Distance 

Input: yx


,  Output: matrixC  

 
1. xxlen


    ;     yylen


 ;    ;0.000 matrixC  

3. for  ( 10  lenxi )        ;]0][[ iCmatrix  

4. for  ( 10  lenyj )       ;]][0[ jCmatrix  

5. for  ( 10  lenxi ) 

6.     for  ( 10  lenyj ); 

 ;]))1][1[],1][[

],][1[((min)),({(]][[.7

2

1
2

2





jiCjiC

jiCyxDjiC

matrixmatrix

matrixjimatrix
        

8.return ]][[ lenlenmatrix yxC ;      

Fig: 1 DTW algorithm 
 
4. Wavelet based Featured Time Warping 
  
In this paper, we propose two new methods for retrieval of 
similar sequences from large databases. Our first method 
uses the features extracted from wavelet based compressed 
signal and second method uses the featured vector of 
decomposed coefficients, both support indexed based time 
warping distance measure. Our main objective is to 
improve the search performance in huge databases without 
allowing the false dismissals and minimization of false 

alarms. To achieve this goal, we introduce  wavelet based 
featured time warping distance functions compD wlttw and 

coeffD wlttw  for our proposed methods, both under 

estimate and lower bound  the original time warping 
distance efficiently and consistently. Our distance 
measures also satisfy the triangular inequality, a 
precondition for indexing in most of the metric spaces 
[1][23]. In preprocessing phase, first of all we decompose 
the network traffic signals using wavelet-based 
techniques. In the first phase for first proposed method, we 
smooth the signal while using wavelet filtering techniques 
and then compressed them by retaining 99% energy of 
original signal using global threshold methods and select 
the features of the compressed signal on the basis of its 
maxima, minima and average. In the second proposed 
method, we decompose the signal and select the featured 
vector from the coefficients of decomposed signal using 
the average of approximation coefficients at the coarsest 
scale, maxima of maxima and minima of minima of detail 
coefficients.  
 
For the first method, we can write the Eq. (6) as  

     



J

i
iJ tDtStf

1

                      (7) 

which can be further reduced using global threshold 
methods to 

     





Jp

i
iJ tDtStf

1

                       (8) 

The Eq. (8) will be our reduced model on the basis of 
which we will compress our signal. The compression rate 
will be the ratio between the length of reduced model and 
length of original signal. If we write the synthesized 
compressed signal as 

   naaatfComp ,,, 21                   (9) 

 then for efficient access to similar sequences in large 
databases, we select a 3-tuple feature vector out of each 
compressed signal on the basis of their maxima, minima 

and average denoted by  maxa ,  mina  and   avea  

respectively. We introduce this feature vector as indexing 

attribute to multi-dimensional index and compD wlttw  as 

distance function to scan the similar sequences in pre- 
filtering phase using range query.  In our second proposed 
method, the model of decomposition given in Eq. (7) will 
be truncated to 

       



J

i
i

J

i
iJ tDtDtStf

11

minmax     (10) 

We select 3-tuple feature vector from this model as 
indexing attribute on the basis of following: 
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a. The mean of the approximation signal at the 

coarsest scale, i.e. Ja  

b. The maxima of maxima of detail coefficient at all 

scales, i.e.  maxmax d  

c. The minima of minima of detail coefficient at all 

scales, i.e. minmin d  

 and coeffD wlttw  as distance metric.  In post processing 

step, for both these methods we again compute the time 
warping distance of original signals for truncated database 
to avoid any false alarms. This will increase our execution 
time but gives more accuracy.  Note that in our proposed 
algorithms the speed comes from less distance calculations 
for featured vectors in first phase and distance calculations 
for reduced database in the second phase without much 
compromising on accuracy. To the best of our knowledge, 
our approaches using the features extracted from 
compressed wavelet based signals and coefficients of 
decomposed signals on the basis of averages, maxima and 
minima are not explored in the related work for mining 
similarities in large data basis.    
 
Our Proposed methods are given in algorithm 2. 
 
Algorithm 2: Wavelet based featured time warping 
Input: QS,         Output: = O          

1.  Decomposition and compression of query Q  and 

database  Ni ssssS ,,, 21  where  Ni ,2,1  

using wavelets. Each is  is having arbitrary length 

either {216, 218, 220, 222}.  
2.  Extraction of featured vectors of Q  and S  from 

compressed signal at low resolution on the basis of 
their maxima, minima and average. 

3.   Given  QF  and  iSF  in step 2, perform range 

query on multi-dimensional index using R-tree. If 

 (a)  for method 1       iwlttw SFQFcompD ,  and 

 (b) for method 2       iwlttw SFQFcoeffD ,  

       then add to output O 
4. For each i  in answer if   itw SQcompD ,  

                  itw SQcoefDor ,
itw SQcoeffD ,

then remove i from 

O  
5.    Return O                                                                                                       
 
4.1 SSTDB and Analysis of Proposed Algorithm  
 
We have applied our experiments on a large database 
named SSTDB (Self similar network traffic database). 
This database contains 7150 total network traffic signals 
(550 files in each of 13 folders). All of these files were 

than be packed in *.rar format using winRar software of 
300MB packages and uploaded on [24]. The total size of 
this database is approximately 30GB.  

 
We selected the length of sequences ranging 216 to 222 
(with even powers only) observations at a dyadic scale. 
The queries were also selected from same database 
randomly. We reported the results are much better for 
huge data bases [1][12].  For all the experiments, we 
developed our own codes for wavelet transformations and 
multidimensional index search within the MATLAB 
environment. 
 

4.2 Comparisons and Evaluation of Results  
 
We compare our proposed methods with the original time 

warping distance metric twD  in which we select a 

sequence from a database and compute its  time warping 
distance with a given query sequence using dynamic time 
warping algorithm  to search their similarity and repeat the 
process for all the sequences in the database. We also 
compare our results with so far claimed the best lower 

bounding distance function lbtwD  [22]. We use 

the 2L norm for base distance function for all these 
methods. We carried out our experiments using Haar, db4, 
and sym6 wavelets and reported the results for Haar 
wavelet due to its simplicity. We used the range query and 
also employed the multi-dimensional index strategy using 
R-tree upon featured vector spaces of our proposed 
methods. In all the experiments, we fixed the values of 
query thresholds and values of precision and recall, two 
negatively correlated quantities, for the sake of 
comparison of these techniques.  All our results are 
averaged over 50 trials for each experiment. 
 
4.2.1 Experiment 1 Varying the number of sequences 

Our first experiment evaluates the performance efficiency 
of our proposed methods in terms of their elapsed time 
with the data set and query sequences selected from the 
randomly generated synthetic data. The CPU time 
measurement starts when the query is posed and ends 
when the answers are retained after the post-processing 
step.  
 
In this experiment we used varied the number of 
sequences of arbitrary lengths ranging from 216 to 222 
(with even powers only) observations for data base size of 
100 to 500 sequences and reported the results averaged 
over 50 trials. Figure 2 and table 1 show the average 
elapsed CPU time for all four methods. Our proposed 
methods give much better results as compared to original 

time warping distance twD  and compatible results with so 
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far claimed best lbtwD   technique. Our second proposed 

method based on the distance metric coeffD wlttw  has 

given much better results as compared to all three methods 
and almost constant CPU time for even large data bases. 

 
 
 
 
 
 
 
 
 
 
 
 

4.2.3 Experiment 2: Varying the length of sequences 
 
This experiment is again on synthetic data in which we 
have varied the length of sequences to 216 to 222 (with 
even powers only).We fixed the data base size to 100 
sequences and reports the results for average of 50 trials 
for each sequence length. Figure 3 and table 2 shows the 
average elapsed CPU time for the four methods. Our 
proposed methods give four to eleven times better results 
depending on the number of sequences as compared to 

lbtwD   and almost twenty times to original time warping 

distance twD . 

The distance metric selected on the basis of wavelet 

coefficients coeffD wlttw  gives even better results as 

compared to compD wlttw  in most of the cases. The 

results also show that the CPU time in both of our 
proposed cases do not increase rapidly with the increase in 

number of sequences as compared to twD  and lbtwD  . 

 
Cat Original 

lbtwD   compD wlttw

 

coeffD wlttw

 
Lof  
Seq 

Average 
CP Time 

Average 
CP Time 

Average 
CP Time 

Average 
CP Time 

216 646 636 633 632 
218 715 667 635 634 
220 1434 904 659 664 
222 6478 2617 926 897 
Table 2: Results of varying number of sequences for fixed length 
(average CPU time in seconds) 

 
4.2.4 Experiment 3: Varying the number of 

sequences for fixed length  
 
Our next experiment is again on synthetic data in which 
we varied the number of sequences from 500 to 2000 with 

a gap of 500 for length of 218 with the same experimental 
settings discussed in previous experiments. Figure 4 and 
table 3 shows the average elapsed CPU time for the four 
methods. It is observed that all four methods give linearly 
increased CPU time with the increasing number of 
sequences. Our second proposed method 

coeffD wlttw gives almost 15 to 70 times better results as 

compared to original time warping distance twD  and 2 to 

10 times to lbtwD  .However in this experiment lbtwD   

gives slightly better results as compared to our first 

proposed method compD wlttw . Figure 5 shows the graph 

of similar sequences extracted from the large database by 
using our proposed algorithms.  
 

Cat Original 
lbtwD 

 compD wlttw

 

coeffD wlttw

 
# of 
 Seq 

Average 
CP Time 

Average 
CP Time 

Average 
CP Time 

Average 
CP Time 

500 653 635 638 635 
1000 672 639 644 638 
1500 692 643 650 641 
2000 711 646 656 643 

Table 3: Results for varying number of sequences of 
fixed length (average CPU time in seconds)

 

Fig. 2 Comparison of average elapsed CPU time by varying the 
number of sequences 

 

Fig. 3: Comparison of average elapsed CPU time by varying the 
length of sequences. 

Cat. Original 
lbtwD 

 compD wlttw

 

coeffD wlttw

 

#of  
Seq 

Average 
CP Time 

Average 
CP Time 

Average  
CP  Time 

Average 
CP Time 

100 1092 827 774 751 
200 1611 1036 921 750 
300 2022 1212 1046 751 
400 2467 1395 1175 755 
500 2954 1595 1317 756 
Table 1: Results for varying number of sequences of 
arbitrary length (average CPU time in seconds) 
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Fig. 4: Comparison of elapsed CPU time by varying the number of 

sequences of fixed length. 

 
Fig. 5: Graph of similar collected sequences using proposed 

algorithm. 

 
5 Discussion and Conclusions 
 
In this paper we present two new approaches to wavelet 
transformation for retrieval of similar sequences using 
indexed based time warping technique. We proposed two 
lower bounding distance 

functions compD wlttw and coeffD wlttw  using 3-tuple 

feature vector on the basis of maxima, minima and 
average extracted from the wavelet based compressed 
signal for the first proposed method and 3-tuple feature 
vector from decomposed wavelet coefficients on the basis 
of over all average of approximation coefficients at the 
coarsest level and maxima of maxima and minima of 
minima of detail coefficients for our second proposed 
model. Our proposed methods are based on the theory that 
most of the time series signals are always having the noise 
and unnecessary details not required for further analysis 
hence features extracted directly from such signals may 
not give the true picture of it. A compressed signal using 
wavelet transformation filters will be comparatively more 
smoothed and features extracted from it are more helpful 
for speedy and accurate search procedures as proved in 
experiments conducted on the basis of our first proposed 
method. At the same time, in our second proposed method, 
features extracted from the wavelet decomposition 

coefficients capture the over all trend and the important 
discontinuities of the signal which are severely smoothed 
out by the compression process in the first method. We  
proved that our proposed methods are compatible with 
prevailing methods and even much better in most of the 
cases particularly for our second proposed method based 
on features extracted from wavelet coefficients and 

distance metric coeffD wlttw .We carried out experiments 

with different wavelet families and found our methods 
applicable to all these. We have left the comparison of all 
these for some future work and reported the results with 
the simplest, cost effective and efficiently calculated Haar 
wavelets. In future we intend to explore vagueness of 
similarity in large time series databases based on our 
proposed techniques.  
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