
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 1, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

27

An Overview of Portable Distributed Techniques

Sanjay Bansal 1, Nirved Pandey2,

1 Dept of CS, RGPV, SRGPGPI
Indore, Madhya Pradesh, 452001, India

2 Dept of CSE, RGPV, IIPS
Gwalior, Madhya Pradesh, 474011, India

Abstract

In this paper, we reviewed of several portable parallel
programming paradigms for use in a distributed programming
environment. The Techniques reviewed here are portable. These
are mainly distributing computing using MPI pure java based,
MPI native java based (JNI) and PVM. We will discuss
architecture and utilities of each technique based on our literature
review. We explored these portable distributed techniques in four
important characteristics scalability, fault tolerance, load
balancing and performance. We have identified the various
factors and issues for improving these four important
characteristics.

Keywords: Message Passing Interface (MPI), Java Native
Interface (JNI), Parallel Virtual Machine (PVM), Component
Object Model (COM), Distributed Component Object Model
(DCOM).

1. Introduction

Computing power of idle hosts is utilized by distributed
computing. There are certain strong reasons that justify
using distributed computing in comparison than
mainframes. Distributed systems offer a better price and
performance than mainframes. A distributed system has
more total computing power than a mainframe. If one
machine crashes, the system as a whole can still survive in
distributed system. Thus distributed system provides better
reliability. Computing power can be added in small
increments in distributed systems. In this way Incremental
growth can be achieved. Distributed systems allow many
users to access a common database thus provides data
sharing. It also allows many users to share expensive
peripherals. It makes human-to-human communication
easier. It has flexibility, because workload is spread over
available machines in most cost effective way. On
distributed computing, various heterogeneous devices
communicate with each other with different ways.
 One of the ways in which Distributing computing
can be classified is based on portability; Portable

Distributed Computing v/s Non-portable Distributed
computing. Within each type, there may be several
techniques considered. The basis of the selection a
techniques in a group was that these techniques were most
prevailing existing distributing computing technique. The
other basis of choice for selecting a technique in each
group was that these techniques individually represent
their group having a distinguished feature. Various
distributed computing techniques are:

(1) Distributed Computing through Message Passing
without using Java: In this Plain MPI, PVM may be
analyzed

(2) Distributed Computing Through Middleware such
as COM-DCOM CORBA.

(3) Distributed Computing through .NET Remoting.
(4) JNI: Wrapper: C and C++ codes are interfaced with

Java codes using MPI
(5) Pure Java using socket programming and RMI and

using these techniques in MPI.
Among these distributing computing techniques, some

are portable and some are not portable. In this paper, we
have discussed portable techniques mainly distributed
computing using pure java based MPI, native java based
MPI and PVM.

2. Portable Distributed Techniques

A technique is portable if it applies to different versions of
the same operating system (e.g., past and future versions
of Operating System) and to different operating system

2.1 Distributed Computing using Pure Java Based
MPI

The Message Passing Interface (MPI) provides a
powerful programming paradigm for high performance
computing. It is based on the interchange of messages

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 1, May 2010
www.IJCSI.org

28

between processes. MPI can be implemented in any
programming language because MPI is language
independent. Earlier MPI was implemented in C and
FORTAN. Performance of C and FORTAN based MPI is
high but portability is major drawback. Researchers are
devoting efforts to overcome the problem of portability.
Portability problem is solved by implementing the MPI
with a portable high level language like JAVA. MPI
implementation in java has overcome the problem of
portability but on the cost of performance [1]. For the last
few years, both researchers and practitioners have been
concerned with the improving the performance of java
based MPI.

MPI can be implemented using java in two ways; pure
java and impure java implementation. Researchers are
trying to solve many issues related to pure java
implementation of MPI. These issues are efficient and
lightweight distributed computing implementation, design
and development of user centric interface for
administrator to configure environments, performance
evaluation techniques, performance improvements, system
interoperatability across a diverse range of devices,
efficient implementation, flexibility, fault-tolerance,
scalability, transparency, performance with portability,
efficient access control, easy to access, high degree of
abstraction to ease the programming , load balancing,
heterogeneity, malleability(the capability to handle
changes in the resources used during a computation)
etc[2].

 Java is object oriented language with an attractive
feature of portability. Hence practitioners are trying to
implement a high performance implementation of MPI
with different approaches based on MPI standard. In order
to implement MPI using java, MPJ is developed. MPJ is a
MPI specification for java. It works with impure as well as
with pure java [3]. Pure java implementations of MPI are
two types, Socket based and RMI based. Socket based are
flexible but its programming is complex. Programming
with RMI is very easy and efficient. Programmers with
RMI can make easily distributed application as compared
with socket. Another problem with socket is errors.
Distributed programming using socket is very difficult as
compare to RMI. Hence programming with socket is
tough. Programmer can not make distributed system easily
with socket [4].

Performance is measured through latency, bandwidth,
and total processing time mainly. Performance can further
be improved. In our literature we find several java based
MPI with specific shortcoming, but no one can full fill all
basic requirements. Researchers are also trying to
implement “one size fit all”. Reason for “one size fit all” is
that for some main concern could be portability while for
other high bandwidth or low latency. Portability and high
performance are contradictory requirements. There is

much scope to manage these contradictory requirements.
There have been various efforts made by researchers to
improve the performance of pure java based MPI, and
maintaining the portability. Some researchers implemented
MPJ with layered architecture. In this layered architecture
java, java new I/O (NIO) based device, a shared memory
device are implemented. It brings ability to swap devices
at run time and thus manage the contradictory
requirements [5].In this layered architecture, one of layer
is of native MPI so it adds overheads and the performance
improvement is not so significant. There is a strong need
to identify the factors affecting performance and explore
the ways to improve the performance of pure java based
MPI.

 JMPI is designed with remote method invocation with
object serialization. JMPI is written purely in java. JMPI
can be run on any host where java virtual machine (jvm) is
available. As compare to mpiJava it is more stable and
reliable. Performance is very low as compare to Sun’s
RMI or KaRMI [6]. It has a good interface tool which can
further be improved. Time to time researcher evaluate the
performance of all main techniques of distributed
paradigm. In their evaluation they found that the Java RMI
has higher round trip latency, when compared with MPI
and PVM. The reason for higher latency is, in JavaRMI
communication is done in terms of objects. When
communication is done over the network using Java RMI,
the objects are converted into bytes and then these bytes
are transmitted over the network. The conversion of
objects into bytes is a time consuming job. For this reason,
the Java RMI has the highest latency among all paradigms.
Java RMI gives the least performance with respect to
bandwidth [7]. There is a lot of scope to identify the
factors, to improve the performance. There is a strong
need to make a framework of these critical factors. This
framework can provide a better understanding to
developers, designers and programmer managers to design
and develop the high performance portable distributed
system using pure java. Researcher designed JMPI using
both RMI and socket [4]. There are further research areas
to implement multiple process of an MPI application on
same machine as a separate thread which can improve the
performance. Best performance is obtained by increasing
the number of computers. However latency is not
measured for JMPI which can be a research problem for
our research work.

2.2 Distributed Computing using Impure Java
Implementation of MPI

Java native interface implementation of MPI is
basically wrapping existing native MPI libraries with the
Java. Java Native Interface (JNI) specifies the transition
between java code running within the java virtual machine

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 1, May 2010
www.IJCSI.org

29

(JVM) and native, system-dependent C or FORTRAN
code. One of the first attempts was Bryan Carpenter's
mpiJava. mpiJava is an essentially a collection of JNI
wrappers to a local C MPI library[8]. It is a hybrid
implementation with limited portability. It has to be
recompiled against the specific MPI library being used.
Researcher developed HPJava to overcome the problem of
compiling again [9].

 The major research problem is efficient
cooperation between java and native codes [10]. JNI also
introduce a time overhead and affect the performance.
Researcher devoted to measure the time overhead. The
overall native method invocation overhead turned out to
be about 3-5 times bigger than for ordinary methods [11].
Researcher also worked for a better understanding of JNI-
related performance issues that might help developers to
make more informed decisions during the software design
phase. Still there is much scope to work in same.

 JNI performs poorly because most of the data
transferred between the virtual machine and the native
space must be copied [12]. Researcher avoided the JNI
overhead by tightly integrating mpiJava with a version of
Hyperion[13].Some researcher suggested direct buffering
mechanism to improve the overhead of copying the
data[14][15].Still performance of native java interface is
an issue that need a systematic investigation. There is a
need to design a better understanding of all techniques to
overcome the shortcomings like performance, limited
portability, efficient and effective coordination among
native and java codes.

 Beside these issues, the mpiJava library is not
thread-safe partly because it depends on an underlying
native MPI library. Even if the native MPI library was
thread-safe, some additional work would be needed to
make the mpiJava wrappers thread-safe. There is a
tremendous scope to address various issues related with
JNI to improve the performance, fault-tolerance,
scalability, transparency, load balancing, resource tracking
etc. javaMpi is another wrapper around C MPI Library.
JNI has another problem of limited portability [3].

 With our literature survey we find some key areas
related to java native interface. These key areas are
distribution of load over different computers, managing
resources and scheduling user jobs, fault tolerance
techniques improvements, dynamic load balancing
[17].There is a tremendous scope to identify the factor and
their improvement in stated above.

2.3 Distributed Computing using PVM

PVM system is a distributed programming
environment. PVM support heterogeneous distributed
computing. PVM is a portable distributed computing. It
supports certain forms of error detection and recovery.

The PVM (Parallel Virtual Machine) provides a unified
framework .Large systems can be developed in a
straightforward and efficient manner. PVM permit a
collection of heterogeneous machines on a network to be
viewed as a general purpose concurrent computation
resource [18]. With our literature survey we found that
there are several areas of PVM in which substantial efforts
have been done by various researchers. These areas are
better technique for dividing and distributing the big task,
performance measurement, performance improvement,
analysis, load balancing, dynamic resource allocation and
utilization, support for the automatic compilation of
different object modules for different architectures, fault
detection and tolerance, data access, develop software
environments that will automatically find a near-optimal
mapping for an high computing(HC) program expressed in
a machine-independent high-level language.

 With PVM, There is a need to divide
and distribute a complex big task among various
computers. To address this issue, researcher suggested the
heterogeneous network computing environment (HeNCE)
as a tool. This tool decomposes their application into
subtasks. HeNCE also distribute these subtasks to the
machines currently available in the HC system [16].
HeNCE allows the programmer to explicitly specify the
parallelism for an application by creating a directed graph.
HeNCE also has four types of control constructs:
conditional, looping, fan out, and pipelining [19].However
there is still need for improvement in dynamic
environment for task divide and allocation. There is a
strong need for dynamic self-adjustment of task
deployment and other aspects of self-management. Still
there is need to investigate systematically.

 From time to time, researchers have been
devoted efforts to measure the performance of PVM and
compare it with others techniques of distributed
computing. PVM has high latency. It is due to daemon. In
case of PVM, the daemon is responsible for all
communications. It provides flexibility but it eats up the
processing power of the machine. Due to this reason the
PVM and Java RMI take more time to pass the message
(high latency). PVM performance is 2 to 3 times slower
than RPC [7]. There is research scope to work to
investigate the critical factors and their improvements with
respect to performance of PVM.

 Researcher also
compares PVM with MPI. The total time of execution of
the PVM version is about 20% longer than the MPI
implementation of the algorithm. PVM environment is
built on the concept of virtual machine, which secures
three levels of heterogeneity. First, the network level:
different networks can create common virtual machine.
Second, the machine level: computers with different
architecture, operating systems and data formats can create

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 1, May 2010
www.IJCSI.org

30

virtual machine. Third, the application level: the
architecture of the virtual machine can be matched to the
form of a subtask [25]. The PVM environment was created
with heterogeneity over performance, while the principal
idea of MPI standard is performance and portability over
flexibility. There is much scope to explore the ways to
make PVM for data parallel application and to improve the
performance of PVM.

 Performance improvement can also be
achieved by reducing the message transmission time.
There is much scope to investigate the reasons and factor
to reduce message transmission time. Another reason for
performance degradation is buffer access time. There is a
strong need to make more effort to reduce PVM based
memory allocation time, and improve access protocols to
reduce overall message buffering time.

 PVM does not offer some functionality such as
thread safety, multiple communication end-points per task,
and default-case direct message routing. In order to solve
these issue researchers developed JPVM.JPVM is a java
implementation of PVM [26]. JPVM uses direct task-to-
task message delivery instead of daemon-to-daemon
routed communications. JPVM is based on TCP. However
UDP/IP implementation is yet to be suggested and
implemented. When performance of PVM, JPVM is
compared, we found that performance become worst and
bandwidth is also lost [27].There is much scope to address
these issues such as thread safety, multiple communication
end-points per task, and default-case direct message
routing differently rather than implementing in java.

 Performance is measured by simulation elapsed time,
speedup and bandwidth [7]. Performance may be different
for light and heavy traffic. There is much scope to identify
the main causes and relationship between load amounts
with performance. Researchers have evaluated the
significance of reducing buffer access time and message
transit time in order to improve the runtime performance.
There is a common belief that to reduce the elapsed time
of a parallel program, the workload distribution among the
processors must be balanced [20]. So there is a research
scope in load balancing and distribution among the
various computers connected in a distributed network.
Many researchers observed that other factors such as inter-
processor communication overheads may also cause poor
performance. So there is a scope to improve the
interprocess communication to improve performance.

 By load balancing, performance
of PVM can be improved significantly. PVM round robin
load balancing is not the correct approach in a
heterogeneous industrial environment where different
machines have dissimilar performance. As a result, the
Applied Research and Technology Lab has developed a
new load balancing sub system ,which has the ability to
manage PVM spawn taking into account both current CPU

load and CPU performance altogether. Tests have been
conducted on the new load balance subsystem which
results in an increase of PVM performances in a heavy
heterogeneous (in terms of workload/performances)
environment [21].Results stated there is improvement in
performance but there is a need for reasonable
improvements. Hence there is a lot of scope to correct the
load balancing. There is also need to distribute the load
among various machines in order to maximize the usage of
machine and minimize the task execution. There is a still
need of “intelligent distribution of load”.

 The main reason for low performance of
PVM is daemon thread. It provides the flexibility but eats
up all resources. Researcher are also trying to use one of
the new general purpose transport protocol called SCTP
(Stream Control Transmission Protocol) for direct
communications among the tasks [22]. SCTP has been
recently standardized by the IETF (Internet Engineering
Task Force) and, compared it with TCP (Transmission
Control Protocol). It has new interesting characteristics
that could be more suitable for parallel applications.
Hence there is a lot of scope to explore the ways for this
[23].

Fault-tolerance becomes an important requirement in
distributed systems. Many researchers are devoting their
efforts in development of a fault-tolerant PVM.
Researcher presents a transparent, non-blocking check
pointing protocol to support fault-tolerance for PVM
applications. Even if the applications have dynamic
number of processes, the protocol can be implemented as a
user-level library and, therefore, the changes in PVM
library and operating system is not necessary[24].However
due to check point, an overhead is introduced that could
make it unsuitable for many application. So there is a need
for a low overhead fault-tolerance technique for PVM.

 From our extensive literature
survey, there is a lot of research scope in improving the
overall utilization of resource. It will consequences
improvements in performance of PVM.

3. Conclusions

Based on our discussion in section two, we derive the
several findings about the portable distributed techniques.
Performance of java based MPI is low as compared to
plain MPI on cost of portability. Portability and
performance are contradictory requirement. Performance
can be further improved by improving the factors affecting
the performance. Conversion of byte codes to machine
codes adds an extra overhead on the performance. In case
of JNI, by improving the coordination between the java to
native code and vice-versa performance can be improved.
Daemon eats up all processing power of computing nodes
in PVM. Thus by use of the new general purpose protocol,

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 1, May 2010
www.IJCSI.org

31

performance of PVM can improved. More adaptive
improved and fuzzy algorithm is required to make load
balancing more efficient.

References
[1] V. Getov, S. Flynn-Hummel and S. Mintchev., “High-
Performance parallel programming in Java: Exploiting native
libraries,” In ACM 1998 Workshop on Java for High
Performance Network Computing, Palo Alto, February 1998,
Concurrency: Practice and Experience, 1998.
[2] G. F. Jordi, “Performance Improvement of Multithreaded
Java Applications Execution on Multiprocessor Systems,”
Computer Architecture Department (DAC), Technical University
of Catalonia (UPC), Barcelona (Spain), July 2005.
[3] G. Vladimir, L. Quanming, a M. Thomas and M. Williams,
“Message-Passing Computing with Java: Performance
Evaluation and Comparisons,” 1066-6192/01$10.000, 2001
IEEE, pp. 173-177.
[4] B. SeungJun and A. JinHo, “Implementation and
Performance Evaluation of Socket and RMI based Java Message
Passing Systems,” 0-7695-2867-8/07 $25.00, 2007, IEEE, DOI
10.1109/SERA.2007.60, pp. 153-159.
[5] B. Mark, C. Bryan and S. Aamir, “MPJ: Enabling Parallel
Simulations in Java,”
www/acet.reading.ac.uk/projects/mpj/docs/res/DSGTR19062005
.
[6] M. Steven, K. Israel and C. Mani Krishna “JMPI:
Implementing the Message Passing Standard in Java,”
www.ecs.umass.edu/ece/realtime/publications/morin02.pdf.
[7] Q. Kalim and R. Haroon “A Performance Evaluation of Rpc,
Java Rmi, Mpi And Pvm,” Malaysian Journal of Computer
Science, Vol. 18 No. 2, December 2005, pp. 38-44.
[8] M. Baker, B. Carpenter, G. Fox, S. Ko and S. Lim “mpiJava:
An Object-Oriented java Interface to MPI,” Lecture Notes In
Computer Science; Vol.1586, proceedings of the 11
IPPS/SPDP'99 Workshops held in conjunction with the 13th
International Parallel Processing Symposium and 10th
Symposium on Parallel and Distributed Processing, pp.748-
762 ,Year of Publication: 1999, ISBN:3-540-65831-9.
[9] C. Bryan and F. Geoffrey “Hpjava: A Data Parallel
Programming Alternative,” 1521-9615/03/$17.00, 2003, IEEE.
[10] K. Dawid and S. Vaidy, “Efficient Cooperation between
Java and Native Codes - JNI Performance Benchmark,” Emory
University, Dept of Math and Computer Science.
[11] Z. Bao-Yin, Y. Ze, Y. Guang-Wen and Wei-Min Zheng,
“Dynamic Load-Balancing and High Performance
Communication in Jcluster,” 1-4244-0910-1/07/$20.00 c_2007
IEEE.
[12] B. Pugh and J. Spacco, “MPJava: High-Performance
Message Passing in Java using Java.nio,” In Proc. 16th Intl.
Workshop on Languages and Compilers for Parallel Computing
(LCPC'03), LNCS vol. 2958, pp. 323-339, College Station, TX,
USA, 2003.
 [13] H. Philip and R. Mathew “Cluster computing With Java,”
Computing in Science and Engineering,
Volume 7, Issue 2 (March 2009), pp. 34-39, Year of
Publication: 2009, ISSN: 1521-9615, 1521-9615/05/$20.00 ©
2005 IEEE.

[14] B. Mark, C. Bryan and S. Aamir, “MPJ Express: Towards
Thread Safe Java HPC,” Cluster Computing, 2006, IEEE
International Conference CLUSTER 2006, pp. 1-10.
[15] M.A. Baker, B. Carpenter, and A. Shafi, “MPJ Express:
Towards Thread Safe Java HPC,” Proceedings of the IEEE
International Conference on Cluster Computing (Cluster 2006),
Barcelona, Spain, September, 2006, ISSN: 1552-5244.
[16] A. Beguelin, J. Dongarra, A. Geist, R.Manchek and K.
Moore, “HeNCE: A Heterogeneous Network Computing
Environment,” Tech. Rep. CS-93-205 (August 1993), University
of Tennessee.
[17] A. Jameela, M. Nader, J. Hong and S. David, “An Agent-
Based Infrastructure for Parallel Java on Heterogeneous
Clusters,” Proceedings of the IEEE International Conference on
Cluster Computing (CLUSTER’02) 0-7695-1745-5/02 $17.00 ©
2002 IEEE.
[18] V. S. Sunderam, ‘‘PVM: A Framework for Parallel
Distributed Computing,’’ Concurrency: Practice and Experience,
vol. 2, no. 4, pp. 315-339, December 1990.
[19] M. Muthucumaru, D. B. Tracy, and S. Howard Jay ,
“Heterogeneous Distributed Computing: Encyclopedia of
Electrical and Electronics Engineering,” J. G. Webster, editor,
John Wiley & Sons, New York, NY, 1999,Vol. 8, pp. 679-690.
 [20] P. Kovendhan and D. Janakiram, “The Edge Node File
System: A Distributed File System for High Performance
Computing,” Scalable Computing: Practice and Experience, Vol.
10, Number 1, pp. 115–130, http://www.scpe.org.
[21] D. B. Christian, P. Guido , P. Emiliano De, G. Riccardo and
G. Francesco, “PVM Advanced Load Balancing in industrial
environment,” Proceedings of the 14th Euromicro International
Conference on Parallel, Distributed and Network-Based
Processing (PDP’06), 1066-6192/06 $20.00 © 2006 IEEE.
[22] R. R. Stewart and Q. Xie, “Stream Control Transmission
Protocol (SCTP),” A Reference Guide, Addison-Wesley, 2002.
[23] M. Petrone and R. Zarrelli, “Enabling PVM to build Parallel
Multidomain Virtual Machines,” Proceedings of the 14th
Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP’06),
1066-6192/06 $20.00 © 2006 IEEE.
[24] N. Thoai and D. V. Hung, “Checkpoint and Recovery for
Parallel Applications with Dynamic Number of Processes,” Sixth
International Symposium on Parallel and Distributed Computing
(ISPDC'07), 0-7695-2936-4/07 $20.00 © 2007.
[25] B. Butrylo , F. Musy , L. Nicolas , R. Scorretti and C.
Vollaire, “New Trends in Parallel Electromagnetic Fields
Computation,” Proceedings of the International Conference on
Parallel Computing in Electrical Engineering (PARELEC’02), 0-
7695-1730-7/02 $17.00 © 2002 IEEE.
[26] D. Thurman, “JavaPVM,” available from http://www.
isye.gatech.edu/chmsr/JavaPVM/.
[27] K. Dincer, “jmpi and a Performance Instrumentation
Analysis and Visualization Tool for jmpi,” First UK Workshop,
Java for High Performance Network Computing at EuroPar
1998, September 1998, http://www.cs.cf.ac.uk/hpjworkshop/.

Author’s Profile

Sanjay Bansal has passed B.E. (Elex & Telecom Engg.) and M.E.
(Computer Engineering) from Shri Govindram Seksariya Institute
of Technology and Science, Indore in 1994 and 2001 respectively.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 1, May 2010
www.IJCSI.org

32

He has worked as a lecturer in Medi-Caps Institute of Technology.
Presently he is working as Reader in Shri Gujrati Professional
Institute, Indore. He is pursuing Phd from Rajeev Gandhi
Proudyogiki Vishvavidyalaya, Bhopal, India. His research areas
are load balancing, fault-tolerance, performance and scalability of
distributed system.

Nirved Pandey passed B.E. (Electrical Engineering) in 1988 from
G.E.C. Jabalpur (R.D.V.V.) and M.Tech (Computer Technology)
from I.I.T. Delhi in 1996. He has been awarded Phd in 2008 by
ABV-IIITM, Gwalior. He has worked as a lecturer, sr. lecturer and
then Reader in MITS, Gwalior. Presently he is working as a
Principal at IIPS Gwalior. He has published many International and
national research papers. He has attended many international
conferences. His research areas are distributed system, query
optimization etc.

