
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 1, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

1

Distributed Maximality based CTL Model Checking

Djamel Eddine Saidouni1 ,Zine EL Abidine Bouneb2

1 Department of Computer Science , University Mentouri
Constantine, 25000, Algeria

 2 Department of Computer Science , University El Arbi Ben Mehidi
Oum El Bouaghi, 04000, Algeria

Abstract

In this paper we investigate an approach to perform a distributed
CTL Model checker algorithm on a network of workstations
using Kleen three value logic, the state spaces is partitioned
among the network nodes, We represent the incomplete state
spaces as a Maximality labeled Transition System MLTS which
are able to express true concurrency. we execute in parallel the
same algorithm in each node, for a certain property f on an

incomplete MLTS , this last compute the set of states which
satisfy f or which if they fail f are assigned the value

 .The third value  mean unknown whether true or false
because the partial state space lacks sufficient information
needed for a precise answer concerning the complete state
space .To solve this problem each node exchange the information
needed to conclude the result about the complete state space. The
experimental version of the algorithm is currently being
implemented using the functional programming language Erlang.

Keywords: Author Guide, Article, True concurrency semantics;
State space explosion problem; Distributed model checking;
three value logic.

1. Introduction

Model checking is powerful technique for verifying
reactive systems able to find subtle errors in real
commercial designs, it is gaining wide industrial
acceptance. Compared to other formal verification (e.g
theorem proving) Model checking is largely
automatic[1][2].In our approach the application to be
verified is firstly specified by means of the formal
description technique LOTOS[3][4] . This specification is
translated, using the maximality based operational
semantics, to a graph called Maximality-based Labeled
Transition System (MLTS)[5] . This graph is used for the
properties verification.

The main limiting factor of Model checking
technique is the so called explosion problem where
translation from the specification of the application to a

state transition graph usually involves an exponential
blow-up. State space does not fit into memory or state
space fits in memory, but is too large for being explored
entirely (e.g., access to hash table becomes slower as the
number of states grows).

Three approaches has been proposed in the literature
for tackling this problem, the first one uses some
equivalence relation to reduce the number of states and
transitions in the model (bisimulation relations, alpha
reduction relation, partial order based relations,
...)[6][7][8]. The second approach consists of coding the
model in an efficient representation like binary decision
diagram (BDD) [9][10][11].

To overcome hardware limitations, a third approach
is deeply investigated currently. This approach consists of
using a cluster or a network of workstations. This last
technique has showed its efficiency since it can preserve
the result of the first and second approach with increasing
performance[12][13] [14].

In this paper we continue our work for the
parallelization of the model checking based on the
maximality semantics the first step for the parallelization
of the construction of the state space, which is modeled as
Maximality Labeled Transition System has achieved with
success, for more information we refer the reader to [14],
in this paper we present the second step which is the
parallelization of the Model checking verification
algorithm discussed in [1].

 First the state graph is partitioned among the network
nodes, i.e. each network node owns a subset of the state
space. Each node executes an instance of the parallel
generation algorithm which computes partial MLTS[14].

 Secondly we execute in parallel the same CTL
Model checker algorithm in each node on these
incomplete structure, this last use three value logic of
Kleen [15][16] and return  only when the partial state
space lacks information needed for a defined answer about
the complete state space. The algorithm exchange
information about Border States which is not present in

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 1, May 2010
www.IJCSI.org

2

the node to conclude the result about the complete state
space; if an arbitrary node has new information he need to
make a re-computation.To the best of our knowledge our
Algorithm of verification is the first fix point algorithm of
model checker which can be executed in parallel on
Maximality Labeled Transition System.

2. Maximality Semantics

We assume that the reader is familiar with
behavioural part of LOTOS and its interleaving semantics.

2.1 Maximality based Labeled Transition System

 being a countable set of events names, a
maximality-based labeled transition system of support
 is a quintuplet ( ,,,, A) with :

),,,(= TS is a transition system such that :

S : the countable set of states in which the system can be.
T : the countable set of transitions indicating the change
of system states.
 and  are two functions from T to S such that : for

any transition Tt ;)(t denotes the origin of the

transition and)(t its goal.

),(A is a transition system labeled by an alphabet A .
mS 2:  : is a function which associates to every state

a finite set of maximal event names present at this state.

 mT 2:  :is a function which associates to every

transition a finite set of event names corresponding to
actions that have start their execution such that their
terminations allow the start of this transition.

MT : : is a function which associates to its

transition an event name identifying its occurrence. Such

that for any transition Tt ,))(()(tt   ,
)())(()(ttt   and

)}({))())(((=))((tttt   .

2.2 The intuition behind the Maximality semantics

The semantics of a concurrent system can be
characterized by the set of states of the system and
transitions by which the system passes a state to another.
In the approach based on the maximality, transitions are
events that only represent the beginning of the execution
of actions. Consequently, the concurrent execution of
several actions becomes possible; hence we can
distinguish sequential executions and parallel executions

of actions. Being given that several actions have the same
name can be executed in parallel (auto concurrency), we
associate, to distinguish the executions of each action, an
identifier to every beginning of the execution of that
action. In a state, an event is said maximal if it
corresponds to the beginning of the execution of an action
that can be possibly always executing in this state. In order
to illustrate this semantics let us consider the following
example :

 F = a; b ; stop [] b; a ;stop E = a ; stop ||| b ; stop

Fig.1 F = a; b ; stop [] b; a ;stop.

Fig.2 E = a ; stop
|||

 b ; stop

 Fig.1 represents the MLTS of the LOTOS behavioral

expression F and Fig.2 represents the MLTS of the

LOTOS behavioral expression E . It is clear that in states
2 and 4 of Fig.2 actions a and b are currently executed
in parallel this fact is represented by the presence of the
two event names x and y in each states . However, in

states 2 and 4 of Fig.1, only one action may be in
execution, this fact is captured by the presence of one
event name in each state. A detailed presentation of the
maximality semantics can be found in .

The maximality based operational semantics of
LOTOS is defined on configurations associated to
behavior expressions. For illustration, let us reconsider the

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 1, May 2010
www.IJCSI.org

3

behavioral expressions E and F . In the initial state, no
action has been executed again, therefore the sets of
maximal event names associated to the initial states are
empty, hence the initial configurations associated to the

behavior expressions E and F are][E and][F .

So a configuration represents a state. When applying the
maximality base operational semantics, the following
derivations are possible :

m

xa

E


 ][];[|||][stopbstopx  m

yb



][|||][stopstop yx (1)

x (respectively y) being the name of the event

identifying the beginning of the action " a " (respectively

" b "'). Note that nothing can be concluded on the

termination of the two actions a and b in the
configuration :

][|||][stopstop yx (2)

x and y are said maximal in this configuration. Let's

note that x is also maximal in the intermediate state
represented by the configuration:

 (3)];[|||][stopbstopx 

For the implementation we can implement events as
integer.

Definition 1. A Kripke structure M is a tuple

),,,(IRLS , where S is a finite set of states,

},{: falsetrueAPSL  is an interpretation that

associates a truth value in },{ falsetrue with each

atomic proposition APP the set of all atomic
proposition, for each state in S , SSR  is a

transition relation on S , and SI  is a set of initial
states.

3. Maximality Labeled Transition System as
Kripke Structure

let M=( ,,,, A) be an MLTS such that

),,,(= TS and let K=),,,(IRLS be a kripke

structure, it is clear to see that if we take from M the
maximal events as atomic proposition we can consider M
as a kripke structure defined by :),,,(ITS  .

 Example 1. : we take the example of the MLTS in Fig.2
this MLTS can be seen as kripke structure like this :

Fig .3 The MLTS of E = a ; stop ||| b ; stop as Kripke structure

The atomic propositions are based on the content of states,
since we can define each state as a function:

This function answer the question: "is the arbitrary action
"a" currently executed in the state i?" to make an idea let
consider the MLTS of Fig 2:

 TruebstateTrueastate =)(;=)(22

Whereas:

 FalsebstateTrueastate =)(;=)(11

for example if "a" = A-InCriticalSection and "b" = B-
InCriticalSection we can see that the state 2 violate the
principle of mutual exclusion (safety property : some
thing bad never happen) . We make the remark that the
model of MLTS is very rich of information and also can
be used for the scheduling in multiprocessor platform,
since it represent also the dependence between action. The
main advantage is that this graph can be generated
automatically by a compiler. Our use of MLTS here as
logical Model for verification is very simple than
scheduling since we don't need all the information
contained in it.

Definition 2. Let),,,(= IRLSM a Kripke structure,

the set of border states in M is

}),.(|{=)(RsssSsMborder ''  .[19]

Definition 3. Let),,,(= IRLSM be a Kripke

structure, ST  . We define the partial kirpke structure

),,,(=)(TTTTM IRLST as follows:

 }),(:|{= RssTsTorssS ''
T 

},|),{(= 2121 TT SsTsRssR 

}|{= IsSsI TT 

},,{: truefalsePSL TT 

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 1, May 2010
www.IJCSI.org

4

 We call the partial Kripke structure )(TM a

fragment of M , the states in the set T are all present in

the Node and TST  is the set of border states of

)(TM i.e border ()(TM) . From the definition

of TR we can see that the fragment )(TM know all

the immediate successors of the states present in the node

i.e in T [19]. The truth function TL for the fragment of

M and a CTL formula  is a total function

 },,{: FalseTrueSLT  .

 TruesLT =),( iff �sM , and FalsesLT =),(

iff �sM , we use =),(sLT if we don't know the

truth value at certain stage of computation of the truth
function for example in the start of computation of the
truth on border states.

The truth function on the complete Kripke structure M is
a total function },{: FalseTrueSL  . since all

the information for the computation needed are available
we don't need the third value unknown represented by  .
Definitions .4 Let),,,(= IRLSM be a Kripke

structure,and )(ZM a fragment of M we define :

 }=),(|{=)(truepsLSspT 

 }=),(|{=)( psLSspU

 }=),(|{=)(falsepsLSspF 

 for)(1,=)(, ssinTTs

for),(=)(, ssinUUs 

for),(=)(, sosinFFs

)}(|)({=)(pTssinTpT 

)}(|)({=)(pUssinUpU 

)}(|)({=)(pFssinFpF 

)()()(=)(pFpUpTpS  

  See 21, we have 21 ee  iff)(=)(21 esndesnd

We Interpret the logical operators  and  on

partial kripke structure using Kleene's three value logic .
An accurate and compatible interpretation of Kleene's
connectives was given by Korner [15].Korner defined the
notion of an inexact class of a given non-empty domain A
generated by a partial definition D(P) of a property P of

elements of A as a three-valued ``characteristic function'

1,0,1}{: AX p

=)(aXp












.)D(P(a)P1

;)D(P(a)P0

;)D(P(a)P1

trueistoaccordingwhen

eundecidabliswhen

falseistoaccordingwhen

 Any family of inexact classes of a given domain A is a de
Morgan lattice, the algebraic operations  , and  :

)}(),({=))((aYaXmaxaYX 

)}(),({=))((aYaXminaYX 

)(=))((aXaX 

being counterparts of the Kleene connectives[15]. We now
consider our theory based on the theory mentioned above :

Let   },,{= truefalse  .

Let (  , <) be a total order such that :

truefalse <<
 See 21, in the case when 21 ee we have :

)), , ((= 12121 esndefstefstminee 

)), , ((= 12121 esndefstefstmaxee 

Let  SS and  SG we define :

} ,|{= 212121 eethatsuchGeSeeeGS 
} |{= 21211 eethatsuchGeandSeeGS 

 } |{ 21122 eethatsuchSeandGee  

} ,|{ 212121 eethatsuchGeSeee 

 Let succ be a function defined as follow :

 succ :
  SS 2

 }))(),((|{=)(Resndesndeesucc '' 

4. CTL model checking on fragments

Theorem.1 Given),,,(= IRLSM a fragment of

Kripke structure and a CTL formula, the following
recursive algorithm compute the set of states SfH )(

which satisfy f or it may satisfy f and exclude all

states which not satisfy f .

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 1, May 2010
www.IJCSI.org

5

 •)()(=)(pUpTpH   such that p is an atomic

proposition

•)())}(,((|)({=)(fUfHsndmapSssinTfH 

•)()(=)(gHfHgfH 

•)()(=)(gHfHgfH 

•

)}(|)({

)})()(

))()(()().(|))(({

)}()()().(|))((({

=)(

MborderssinU

fethatsuchesucceand

fUfTesuccfSeesndinU

fHfTesuccfSeesndInT

AXfH

''
















 •

)}(|)({

)})()()().(|))(({

)}()().(|))((({=)(

MborderssinU

fHfUesuccfSeesndinU

feandesuccefSeesndInTEXfH ''














 •))(.(=)(AXZfHZAGfH 

 •))(.(=)(AXZfHZAFfH 

 •)))(()(.(=))((AXZfHgHZfUGAH 

After the application of the above recursive algorithm we

have)(fHs  falsefsL =),(. The other

operators like EG can be all deduced from the operators
cited above, for example))((=)(fAFHEGfH 

for more information we refer the reader to [2].

proof

• For the atomic proposition we can see that)(pH is the
set of states where the formula hold or where the formula
may hold i.e where we are not sure that the formula is
false

 • For the case of)(AXfH : The set

)}()()().(|))((({ fHfTesuccfSeesndInT  

 represent the set of states where all of there successors are
states where the formula f holds, and the set

'eandfUfTesuccfSeesndinU  ))()(()().(|))(({
)}()(fethatsuchesucc ' represent the set of

states where there successors may satisfy f , hence this
set is the set of states where)(AXfH may be satisfied.

Furthermore because we don't know the successors of the
border states we add this sates to the result of computation

)}(|)({ MborderssinU  because this states may

satisfy the formula)(AXfH .

 • We will prove the fix point characterization of the
operators AGf , the fix point characterization for the

remaining CTL operators can be established in similar

manner. The set
S2 of all subset of S form a lattice

under the set inclusion ordering. Each element
's of the

lattice can also be thought of as a predicate on S where
the predicate is viewed as being true or may be true  for

exactly the states in
's . The least element in the lattice is

the empty set, which we also refer to as False , and the

greatest element in the lattice is the whole set S , which

we sometimes write as True. A function that maps
S2 to

S2 will be called a predicate transformer. We follow the
same manner as in [2] first we can see that

AXZfHZ )(=)( is monotonic, and  -continuous

by the theorem of Tarski and Knaster we can conclude that
AGf is the great fix point of. AXZfHZ )(=)(

 proposition 1:The predicate transformer
AXZfHZ )(=)( is monotonic

 proof

let 21 PP  To show that)()(21 PP   , consider

an arbitrary sate)(1Ps  .Then s satisfy f or it may

satisfy f .)=),(=),((. fsLortruefsLei and

for all states
's such that Rss ' ),(and 1Ps'  .

Because 21 PP  , 2Ps'  as well thus)(2Ps' 

 proposition 2:The predicate transformer

AXZfHZ )(=)( is  -continuous

 proof

We want to proof that)(=)(iiii PP   .

first we can see that 121)(PPP  because  is

monotonic we have)()(121 PPP   the same for

)()(221 PPP   which mean that

))()(()(1121 PPPP    more generale we have

)()(iiii PP    . Furthermore we have for an

arbitrary state))(...)()((21 nPPPs   this mean

that :)(1Ps  and)(2Ps  ...)(nPs  this mean

that: fsPs may�)((1 and 's such that

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 1, May 2010
www.IJCSI.org

6

Rss ' ),(implies that)1Ps'  and ...

fsPs mayn �)((
 and

's such that Rss ' ),(

implies that)n
' Ps  .

Hence)()...(2 nPsPs   implies fs may� and

)...(21 n
' PPPs  which mean that)(ii Ps  i.e

)()(iiii PP    

With an informal way we can see that at the first iteration
we have all the state which satisfy f or it may satisfy f ,

lets said that this set is 1Z , at the second iteration we

compute the set of states which is in 1Z and there

successor satisfied f or it may satisfied f i.e there

successor is in 1Z , we forward the computation on the

successors until we reach a fix point. Hence we
understand that we have giving to the operators AGf the

semantics, that we look for the states s , which has the
property that all the states of the paths stemming from s

satisfy f or it may satisfy f . 

Example 2 lets take the fragment of the Kripke

Structure M shown on Figure 8 in node 1, and the property
to be checked on this fragment is)(caAG  :

)()(=)(aUaTaH   , {(1,2)}=)(aT 
,

,4)}(,3),{(=)( aU ,
,4)}(,3),({(1,2),=)(aH

,4)}(,3),{(=)(cH ,)()(=)(cHaHcaH 
,4)}(,4)(,3),(,3){({(1,2)}=)(caH

,4)}(,3),({(1,2),=)( caH
),4)}(,3),(.({(1,2),=))((AXZZcaAGH  

(1,4)}(1,3),(1,2),{(1,1),=0Z

(1,4)}(1,3),(1,2),{(1,1),=

,4)}(,3),{((1,4)}(1,3),(1,2),{(1,1),=

0

0

AXZ

AXZ 

01 ,4)}(,3),({(1,2),= AXZZ 

,4)}(,3),({(1,2),=1 Z

,4)}(,3),(,2),({(1,1),=

,4)}(,3),{(,2)}({(1,1),=

1

1




AXZ

AXZ 

,4)}(,3),(,2),{(=,4)}(,3),({(1,2),= 12  AXZZ 

,4)}(,3),(,2),{(=3 Z

 23 = ZZ

 Fix point reached, the algorithm stop the computation,
from the precedent theorem. we conclude that,

falsecaAGL =))((1,  so the final result of
computation on the fragment in node 1 is :

 ,4)}(,3),(,2),({(0,1), 

5. Distributed CTL Model checking

The main idea of the distributed verification algorithm is

that if we want to check some formula  in some state s
see figure 4, it is clear that the truth of formula depend on

the truth of this formula in
's which is in node II. Hence

we start the computation in node I with =),('sL , i.e

we consider that the formula  may hold in
's . when the

node II finish the computation, if the formula hold in
's ,

the node number I make a recomputation and found that
the formula hold in s for example in the case of

)}(),(,,,,{ fUgEfUgAEFfAFfAGfEGf and

the result of the first computation in node I is  . If the

formula don't hold in
's and the result of the first

computation in node I is  this mean that the formula
don't hold in s . The main difference between the
reasoning algorithm on fragments and the distributed
Algorithm is that in the case of

)}(),(,,,,{ fUgEfUgAEFfAFfAGfEGf we

consider in the fragments algorithm that f may hold in

border states, but in the distributed version we consider
the whole formula  not only f may hold in border

states and the truth on border states is parameter passed to
the predicate transformer as follow :

•).(.= AXZYpZYAFp 

 •).(.= EXZYpZYEFp 

 •).(.= AXZYpZYAGp 

 •).(.= EXZYpZYEGp 

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 1, May 2010
www.IJCSI.org

7

•))(.(.=)(AXZpYqZYqpA  

•))(.(.=)(EXZpYqZYqpE  

where

}=),(=),(|)({=   sLorTruesLMbordersY

 and  is an arbitrary formula represented by one of the

six operator described above respectively, here Y
represent the missing part of information in border sates ,if
some one give us the set of border sates where the formula
to be verified is valid we can conclude the truth of the
formula on the whole Kripke structure, this fact can be
represented as the application of model checking function
to the given information.

Fig .4

Theorem .2 Given),,,(= IRLSM a fragment of

Kripke structure , a CTL formula)(f and

)(= fHY b the set)(Mborders which satisfy

)(f or it may satisfy)(f , the following recursive

algorithm compute the set of states SfH ))((

which satisfy)(f or it may satisfy)(f and exclude

all states which not satisfy)(f .

•)()(.=)(pUpTYpH   such that p is an

atomic proposition

•)())}(,((|)(.{=)(fUfHsndmapSssinTYfH  

•)()(.=)(gHfHYgfH 

•)()(.=)(gHfHYgfH 

 •

)}(|)({

)})()(

))()(()().(|))(({

)}()()().(|))((.({=)(

MborderssinU

fethatsuchesucceand

fUfTesuccfSeesndinU

fHfTesuccfSeesndInTYAXfH

''


















•

)}(|)({

)})()()().(|))(({

)}()().(

|))((.({=)(

MborderssinU

fHfUesuccfSeesndinU

feandesuccefSe

esndInTYEXfH
''













)))(.((.=)(AXZYfHZYAGfH p 

 •)))(.((.=)(AXZYfHZYAFfH p 

 •)))(())(.((.=))((AXZfHYgHZYfUGAH pp 

 Note : YfHfH p )(=)(where)(fH p is the set

of state)(Mborders which satisfy f or it may

satisfy f 

Lemma .1
 The result of the above recursive algorithm can be
influenced only by the truth value of formula to be verified
on border states thus we need a recomputation only when
the truth value on border states change.

 proof
The proof is easy, we can see that the model checking
algorithm is a function depend only on Y the truth value
of the formula to be checked on border states. 

Lemma .2

The distributed termination is reached when no change of
the information on all border states.

 proof

using lemma.1 we can see that if there is no change in all
border states, each instance of the distributed algorithm
don't need to make a new computation , a hence the
distributed algorithm reach a fix point and terminate. 

 Lemma .3

When the termination is detected and still some value has
undefined truth on some sates s i.e =),(fsL ,

example in the case of cycle, this implies that :

 1. In the case of AGf = , truefsL =),(

 2. In the case of AFf = , falsefsL =),(

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 1, May 2010
www.IJCSI.org

8

 3. In the case of)(= 21 UAf , falsefsL =),(

proof
The proof is easy, we can see that the transition relation is
a partial order, in the example of figure 5 we have

1321  i.e that the truth of the formula in state 1
depend on the truth of the formula in sate 2 and so on,
since we know the truth of the immediate component of
our formula (in the example is just atomic proposition P)
in the state present in the node, which must be true for
arriving to this situation, we conclude the result about the
whole Kripke. 

Fig .5 The Fragments of M distributed over Nodes

Fig .6 The Kripke structure M with cycle

Example 3.
Structure M shown in Figure 7, property to be checked on
M is)(caAG  :

Fig .7The Kripke structure M

(3,4)}(1,4),(4,2),(2,4),(5,1),(5,5),(3,5),(2,3),{(1,2),=

},,,{=},{1,2,3,4,5=

R

cbaAPS

, }{=(5)},,{=(4)},,,{=(3)},{=(2)},{=(1) cLcbLcbaLaLbL

 The partitioning of the system on three network nodes
using the following partition function h is shown in
figure 8 :

 },,{},,,,{: 32154321 nodenodenodesssssh 

 3=(5)=(3)2,=(4)1,=(2)=(1) hhhhh

Fig .8 The Fragments of M distributed over Nodes

 The application of the Algorithm on the complete M give
the same result as in [2], {2,3,4}=) (caAGH  , since

all the information needed for the computation is
available. We make the remark that in the case of the
application of the algorithm in the complete Kripke, our
Algorithm can be simplified to the Algorithm in [1],
because {}=Y and the operations  ,  will be  ,

respectively .

iteration 1:

Node I :

{(1,2)}=)(aH p

 {}=)(cH p

{(1,2)}=)(caH p 

 ,4)}(,3),{(=))((=  caAGHY B

 ,4)}(,3),({(1,2),=)(=)( caHYcaH p

),4)}(,3),(.({(1,2),=))((AXZZcaAGH  

(1,4)}(1,3),(1,2),{(1,1),=0Z

(1,4)}(1,3),(1,2),{(1,1),=

,4)}(,3),{((1,4)}(1,3),(1,2),{(1,1),=

0

0

AXZ

AXZ 

 01 ,4)}(,3),({(1,2),= AXZZ 

 ,4)}(,3),({(1,2),=1 Z

,4)}(,3),(,2),({(1,1),=

,4)}(,3),{(,2)}({(1,1),=

1

1




AXZ

AXZ 

,4)}(,3),(,2),{(=,4)}(,3),({(1,2),= 12  AXZZ 
,4)}(,3),(,2),{(=3 Z

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 1, May 2010
www.IJCSI.org

9

23 = ZZ

 Fix point reached, the algorithm stop the computation and
wait new information, if possible, about his border states,
from the theorem 2. we conclude that,

falsecaAGL =))((1,  so the final result of

computation on the iteration 1 in node 1 is :
 ,4)}(,3),(,2),({(0,1), 

Node II :

{(1,4)}=)(caH p 

,2)}{(=))((=  caAGHY B

 (1,4)},2),{(=)(=)( caHYcaH p

)(1,4)},2),.({(=))((AXZZcaAGH  

 (1,4)}{(1,2),=0Z

,4)}(,2),{(=0 AXZ

,4)}(,2),{(=1 Z

,4)}(,2),{(=1 AXZ

 ,4)}(,2),{(=2 Z

 23 = ZZ

Node III :

(1,5)}{(1,3),=)(caH p 

,4)}(,1),{(=))((=  caAGHY B
,4)}(,1),((1,5),{(1,3),=)(=)( caHYcaH p

),4)}(,1),((1,5),.({(1,3),=))((AXZZcaAGH  
(1,5)}(1,4),(1,3),{(1,1),=0Z

(1,5)}(1,4),(1,3),{(1,1),=0AXZ

,5)}(,4),((1,3),,1),{(=1 Z

,4)}(,1),{(,5)}(,3),{(=1  AXZ
,5)}(,4),(,3),(,1),{(=1 AXZ

,5)}(,4),(,3),(,1),{(=2 Z
,5)}(,4),(,3),(,1),{(=3 Z

23 = ZZ Fix point reached .

iteration 2:

Node III : we can make recomputing only in node III
since from Lemma 1. only in node 3 we have a change in
the truth of border states, because the truth value in sate 1
is changed:

,4)}((1,5),{(1,3),=)( caH

(1,5)}(1,4),(1,3),{(1,1),=0Z

(1,5)}(1,4),(1,3),{(1,1),=0AXZ

(1,5)},4),({(1,3),=1 Z

 ,1)}(,4),(,3),{(=1 AXZ

 ,4)}(,3),{(=2 Z

,4)}(,3),{(== 23 ZZ

 from theorem 2. we conclude that

falsecaAGL =))((5,  so the final result is in node

III : (0,5)},4),(,3),{(

using Lemma 2. because no change will happen in border
states, the computation terminate , and the distributed
algorithm halt in the iteration number 2.
using Lemma 3 . we conclude that :

truecaAGL =))((2,  , truecaAGL =))((3,  ,
truecaAGL =))((4,  . The final result of the whole

computation on the three node is : (1,4)}(1,3),{(1,2),

6. Conclusions and related work

We have developing a theory of reasoning on fragments of
MLTS using a three value logic as a base for a parallel
model checker and presenting a natural approach for
distributed model checking on MLTS, to the best of our
knowledge, our algorithm is the first algorithm that use fix
point model checking with three value logic on
maximality labeled transition system. Closest to our work
is the work of [19].In fact, the main problem of the
distributed verification discussed here has been treated in
their work, using the notion of Assumption, which is not a
natural and easy approach for treating the problem , since
they present there idea using an imperative paradigm
which make the proof difficult . Furthermore they don’t
show how to get fragments of the system to be verified,
for that reason I think it is not easy to apply their result
directly to the industry. Our approach has several
advantages, First we have showing how to get the
fragments from a standard language and with a semantic
model which allow the design of systems by action
refinement, second we have making a little change to the
approach of verification, all this make our idea easy to
apply it for industry. Another work similar to our work in
the principle of using three value logic of Kleen on partial
Kripke structure was introduced by [16] but our algorithm
is different from their Algorithm since they use a two pass
, the first one is optimistic which consider the  as true,
the second pessimistic which consider the  as false,
hence the result of the Algorithm have four results (false,
false) <(true, false) < (false, true) < (true, true), for that
reason we think that our approach is the best since it is
easy to adapt it for distributed Model checking. another

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 1, May 2010
www.IJCSI.org

10

interesting work is the work of [20] which define a multi
valued model checking , which is more general than our
work, this work miss an application, our work can be
considered as an application with special case using three
value logic.

Acknowledgments

I would like to thank all the fellows and staff at the Inter-
national institute for software technology, for their indirect
contributions and encouragements during the realization of
this work. A special thanks to Dr Jeff W Sanders for his
collaboration with Dr Djamel Eddine Saidouni and
accepting me as fellow under his supervision in the
UNU/IIST and training me on research. I deeply thank Dr
Jeff W Sanders, whose help, advice and supervision was
invaluable. I can said without his help this work can not be
achieved.

References

[1] E.M. Clarke, E. A. Emerson, and A.P. Sistla. Automatic
Verification of finite state concurrent systems using temporal logic
Specifications. ACM transactions on Programming Languages And
Systems, 8(2):244-263 (April1986).
[2] Edmund M Clarke,Orna Grumberg and al : Model check-ing
MIT press ,2000 .
[3] T. Bolognesi and E. Brinksma, ” Introduction to the ISO
Specification Language LOTOS”, volume 14, Computer Networks
and ISDN Systems, 1987.
[4] ISO8807. LOTOS, a formal description technique based on the
ordering of observation behaviour. ISO (November 1988).
[5] J. P. Courtiat and D. E. Saidouni. Relating maximality-based
semantics to action refinement in process algebras. In ”D. Hogrefe
and S. Leue, Editors, IFIP TC/WG6.1, 7th Int. Cof of Formal
Description Techniques(FORTE’94)”, pages 293- 308. Chapman
Hall (1995).
[6] Milner. ”Communication and Concurrency”. Prentice Hall
(1989).
[7] D. E. Saidouni and A.Benamira Considiration of the cov-ering
steps in The Maximality-based labled transitions systems in
Proceedings of acit 2006.
[8] P. GodeFroid, ” Using Partial Orders to Improve Auto-matic
Verification Methods”, in Proceedings of CAV’90, volume 3,
pages321-340, ACM, DIMACS, 1990.
[9] R.E. Bryant, Graph-based algorithme for boolean func-tion
Manipulation. IEEE Transactions on Computer Science, 37: 77-121,
1986.
[10] D.-E.Saidouni,O. Labbani Maximality-based symbolic model
checking in ACS/IEEE International Conference July 2003.
[11]A. Layeb - D.E. Saidouni Quantum Differential Evolu-tion
Algorithm for Variable Ordering Problem of Binary Decision
Diagram in 13th International CSI Computer Conference 2008.
[12]F. Lerda and R. Sisto Distributed-Memory Model Check-ing
with SPIN in Proceedings of the 5th and 6th Inter-national SPIN
Workshops on Theoretical and Practical Aspects of SPIN Model
Checking,1999.
[13] H. Garavel, R. Mateescu, and I. Smarandache. Parallel state
space Construction for model-checking. In Proc. 8th Inter. SPIN

Workshop, volume LNCS 2057, pages 217-234. Springer, 2001.
Revised version available as INRIA Research Report RR-4241, Dec.
2001.
[14] Z. El Abidine Bouneb, D. E. Saidouni : Parallel state space
construction for a model checking based on max-imality semantics -
CISA 2009
[15] The Handbook of the History of Logic volume 8 : The Many
valued and nonmonotonic turn in Logic ISBN: 978-0-444-51623-7,
2007.
[16] G.Bruns and P.Godefroid Model Checking Partial State Spaces
with 3-valued Temporal logics in CAV Interna-tional Conference
1999.
[17] L. Lamport. What good is temporal logic ? Information
processing, 83:657-668, 1983.
[18] ftp://ftp.rfc-editor.org/in-notes/rfc1321.txt
[19] Lubos Brim, Karen Yorav, Jitka Zidkova : Assumption-based
distribution of CTL model checking, Springer-Verlag 2004
[20] Marsha Chechik, Steve M. Easterbrook, Benet Devereux: Model
Checking with Multi-Valued Temporal Logics.

Zine El Abidine Bouneb. born in Algeria in 1976. He obtained his
master degree from Constantine university, Algeria, in December
2003 on the field of computation and information. Zine El Abidine
Bouneb is interested to the following topics : maximality semantics
, formal methods , type theory , state explosion problem , game
theory , models for concurrency , functional programming. Mr
Bouneb Z.A currently is a lecturer at the university of Oum El
Bouaghi and a PhD student in the university of Constantine under
the supervision of Dr Saidouni Djamel Eddine working on symbolic
verification.

Djamel Eddine Saidouni. was born in Algeria in 1968. He
obtained his PhD degree from Paul Sabatier university, France, in
1996. Djamel Eddine is interested to the following topics :
maximality semantics , formal methods , real time system , state
explosion problem , models for concurrency , refinement. Dr
Djamel Eddine is currently member of the RT-LOTOS project and
the author of the true concurrency model for process algebra
called Maximality Labeled Transition system. Dr Djamel Eddine
has many publications in theoretical computer science and formal
methods . Dr Djamel Eddine is currently an assistant professor in
the department of computer science at the University of
Constantine. He is also the head of the research group on formal
methods.

