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Abstract 

In this paper we investigate an approach to perform a distributed 
CTL Model checker algorithm on a network of workstations 
using Kleen three value logic, the state spaces is partitioned 
among the network nodes, We represent the incomplete state 
spaces as a Maximality labeled Transition System MLTS which 
are able to express true concurrency. we execute in parallel the 
same algorithm in each node, for a certain property  f   on an 

incomplete MLTS , this last compute the set of states which 
satisfy  f   or which if they fail  f are assigned the value  

  .The third value     mean unknown whether true or false 
because the partial state space lacks sufficient information 
needed for a precise answer concerning the complete state 
space .To solve this problem each node exchange the information 
needed to conclude the result about the complete state space. The 
experimental version of the algorithm is currently being 
implemented using the functional programming language Erlang.  

Keywords: Author Guide, Article, True concurrency semantics; 
State space explosion problem; Distributed model checking; 
three value logic.       

1. Introduction 

Model checking is powerful technique for verifying 
reactive systems able to find subtle errors in real 
commercial designs, it is gaining wide industrial 
acceptance. Compared to other formal verification (e.g 
theorem proving ) Model checking is largely 
automatic[1][2].In our approach the application to be 
verified is firstly specified by means of the formal 
description technique LOTOS[3][4] . This specification is 
translated, using the maximality based operational 
semantics, to a graph called Maximality-based Labeled 
Transition System (MLTS)[5] . This graph is used for the 
properties verification. 

The main limiting factor of Model checking 
technique is the so called explosion problem where 
translation from the specification of the application to a 

state transition graph usually involves an exponential 
blow-up. State space does not fit into memory or state 
space fits in memory, but is too large for being explored 
entirely (e.g., access to hash table becomes slower as the 
number of states grows). 

Three approaches has been proposed in the literature 
for tackling this problem, the first one uses some 
equivalence relation to reduce the number of states and 
transitions in the model (bisimulation relations, alpha 
reduction relation, partial order based relations, 
...)[6][7][8]. The second approach consists of coding the 
model in an efficient representation like binary decision 
diagram (BDD) [9][10][11]. 

To overcome hardware limitations, a third approach 
is deeply investigated currently. This approach consists of 
using a cluster or a network of workstations. This last 
technique has showed its efficiency since it can preserve 
the result of the first and second approach with increasing 
performance[12][13] [14]. 

In this paper we continue our work for the 
parallelization of the model checking based on the 
maximality semantics the first step for the parallelization 
of the construction of the state space, which is modeled as 
Maximality Labeled Transition System has achieved with 
success, for more information we refer the reader to [14], 
in this paper we present the second step which is the 
parallelization of the Model checking verification 
algorithm discussed in [1].  

 First the state graph is partitioned among the network 
nodes, i.e. each network node owns a subset of the state 
space. Each node executes an instance of the parallel 
generation algorithm which computes partial MLTS[14]. 

 Secondly we execute in parallel the same CTL 
Model checker algorithm in each node on these 
incomplete structure, this last use three value logic of 
Kleen [15][16] and return   only when the partial state 
space lacks information needed for a defined answer about 
the complete state space. The algorithm exchange 
information about Border States which is not present in 
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the node to conclude the result about the complete state 
space; if an arbitrary node has new information he need to 
make a re-computation.To the best of our knowledge our 
Algorithm of verification is the first fix point algorithm of 
model checker which can be executed in parallel on 
Maximality Labeled Transition System. 

2. Maximality Semantics 

We assume that the reader is familiar with 
behavioural part of LOTOS and its interleaving semantics. 

2.1 Maximality based Labeled Transition System 

  being a countable set of events names, a 
maximality-based labeled transition system of support 
  is a quintuplet  (  ,,,, A ) with : 

 ),,,(= TS  is a transition system such that : 

S  : the countable set of states in which the system can be. 
T : the countable set of transitions indicating the change 
of system states. 
  and   are two functions from T  to S  such that : for 

any transition Tt  ; )(t  denotes the origin of the 

transition and )(t  its goal. 

),( A  is a transition system labeled by an alphabet A . 
mS 2:  : is a function which associates to every state 

a finite set of maximal event names present at this state. 

 mT 2:   :is a function which associates to every 

transition a finite set of event names corresponding to 
actions that have start their execution such that their 
terminations allow the start of this transition. 

MT :  : is a function which associates to its 

transition an event name identifying its occurrence. Such 

that for any transition Tt , ))(()( tt   , 
)())(()( ttt    and 

)}({))())(((=))(( tttt   . 

2.2 The intuition behind the Maximality semantics 

The semantics of a concurrent system can be 
characterized by the set of states of the system and 
transitions by which the system passes a state to another. 
In the approach based on the maximality, transitions are 
events that only represent the beginning of the execution 
of actions. Consequently, the concurrent execution of 
several actions becomes possible; hence we can 
distinguish sequential executions and parallel executions 

of actions. Being given that several actions have the same 
name can be executed in parallel (auto concurrency), we 
associate, to distinguish the executions of each action, an 
identifier to every beginning of the execution of that 
action. In a state, an event is said maximal if it 
corresponds to the beginning of the execution of an action 
that can be possibly always executing in this state. In order 
to illustrate this semantics let us consider the following 
example :  

 
 F = a; b ; stop [] b; a ;stop E = a ; stop ||| b ; stop                                
 

 
Fig.1    F = a; b ; stop [] b; a ;stop. 

 

 

Fig.2    E = a ; stop 
|||

 b ; stop 

                                                                                           
 Fig.1 represents the MLTS of the LOTOS behavioral 

expression F  and Fig.2 represents the MLTS of the 

LOTOS behavioral expression E . It is clear that in states 
2 and 4 of Fig.2 actions a  and b  are currently executed 
in parallel this fact is represented by the presence of the 
two event names x  and y  in each states . However, in 

states 2 and 4 of Fig.1, only one action may be in 
execution, this fact is captured by the presence of one 
event name in each state. A detailed presentation of the 
maximality semantics can be found in . 

The maximality based operational semantics of 
LOTOS is defined on configurations associated to 
behavior expressions. For illustration, let us reconsider the 
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behavioral expressions E  and F . In the initial state, no 
action has been executed again, therefore the sets of 
maximal event names associated to the initial states are 
empty, hence the initial configurations associated to the 

behavior expressions E  and F  are ][E  and ][F . 

So a configuration represents a state.  When applying the 
maximality base operational semantics, the following 
derivations are possible : 

m

xa

E


 ][ ];[|||][ stopbstopx  m

yb

   

][|||][ stopstop yx   (1) 

 
x  (respectively y ) being the name of the event 

identifying the beginning of the action " a " (respectively 

" b "'). Note that nothing can be concluded on the 

termination of the two actions a  and b  in the 
configuration : 

 ][|||][ stopstop yx   (2)  

x  and y  are said maximal in this configuration. Let's 

note that x  is also maximal in the intermediate state 
represented by the configuration: 

 (3)  ];[|||][ stopbstopx    

For the implementation we can implement events as 
integer.  
 
Definition 1. A Kripke structure M  is a tuple 

),,,( IRLS , where S is a finite set of states, 

},{: falsetrueAPSL   is an interpretation that 

associates a truth value in },{ falsetrue  with each 

atomic proposition APP  the set of all atomic 
proposition, for each state in S , SSR   is a 

transition relation on S , and SI   is a set of initial 
states. 

3.  Maximality Labeled Transition System as 
Kripke Structure 

let M=(  ,,,, A ) be an MLTS such that 

),,,(= TS  and let K= ),,,( IRLS  be a kripke 

structure, it is clear to see that if we take from M the 
maximal events as atomic proposition we can consider M 
as a kripke structure defined by : ),,,( ITS  . 

 
 Example 1. : we take the example of the MLTS in Fig.2 
this MLTS can be seen as kripke structure like this : 

 

  
Fig .3    The MLTS of E = a ; stop |||  b ; stop as Kripke structure 

 

The atomic propositions are based on the content of states, 
since we can define each state as a function: 
 
This function answer the question: "is the arbitrary action 
"a" currently executed in the state i?" to make an idea let 
consider the MLTS of Fig 2: 

 

 TruebstateTrueastate =)(;=)( 22   

 
Whereas: 
 

 FalsebstateTrueastate =)(;=)( 11   

 
for example if "a" = A-InCriticalSection and "b" = B-
InCriticalSection we can see that the state 2 violate the 
principle of mutual exclusion ( safety property : some 
thing bad never happen ) . We make the remark that the 
model of MLTS is very rich of information and also can 
be used for the scheduling in multiprocessor platform, 
since it represent also the dependence between action. The 
main advantage is that this graph can be generated 
automatically by a compiler. Our use of MLTS here as 
logical Model for verification is very simple than 
scheduling since we don't need all the information 
contained in it. 
 
Definition 2. Let ),,,(= IRLSM  a Kripke structure, 

the set of border states in M  is 

}),.(|{=)( RsssSsMborder ''  .[19] 

 
Definition 3. Let ),,,(= IRLSM  be a Kripke 

structure, ST  . We define the partial kirpke structure 

 ),,,(=)( TTTTM IRLST  as follows: 

 

 }),(:|{= RssTsTorssS ''
T   

},|),{(= 2121 TT SsTsRssR   

}|{= IsSsI TT   

},,{: truefalsePSL TT   
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 We call the partial Kripke structure  )(TM  a 

fragment of M , the states in the set T  are all present in 

the Node and TST   is the set of border states of 

 )(TM  i.e border ( )(TM )  . From the definition 

of TR  we can see that the fragment  )(TM  know all 

the immediate successors of the states present in the node 

i.e in T    [19]. The truth function TL  for the fragment of 

M and a CTL formula   is a total function  

 

 },,{: FalseTrueSLT  . 

 TruesLT =),(   iff �sM ,  and FalsesLT =),(   

iff �sM ,  we use =),( sLT  if we don't know the 

truth value at certain stage of computation of the truth 
function for example in the start of computation of the 
truth on border states.  
 
The truth function on the complete Kripke structure M  is 
a total function },{: FalseTrueSL  . since all 

the information for the computation needed are available 
we don't need the third value unknown represented by  . 
Definitions .4 Let ),,,(= IRLSM  be a Kripke 

structure,and  )(ZM  a fragment of M  we define :                                                                                                   

 }=),(|{=)( truepsLSspT   

 }=),(|{=)(  psLSspU  

 }=),(|{=)( falsepsLSspF            

                                                                                          
 for )(1,=)(, ssinTTs  

for ),(=)(, ssinUUs   

for ),(=)(, sosinFFs        

                                                                                             

)}(|)({=)( pTssinTpT   

)}(|)({=)( pUssinUpU   

)}(|)({=)( pFssinFpF   

)()()(=)( pFpUpTpS                                                                                              

  See 21,  we have 21 ee   iff )(=)( 21 esndesnd    

                                                                                                 
We Interpret the logical operators   and   on 

partial kripke structure using Kleene's three value logic . 
An accurate and compatible interpretation of Kleene's 
connectives was given by Korner [15].Korner defined the 
notion of an inexact class of a given non-empty domain A 
generated by a partial definition D(P ) of a property P of 

elements of A as a three-valued ``characteristic function' 

1,0,1}{: AX p                                                                                           

 
=)(aXp  












.)D(P(a)P1

;)D(P(a)P0

;)D(P(a)P1

trueistoaccordingwhen

eundecidabliswhen

falseistoaccordingwhen

 
                                                                                                   

 Any family of inexact classes of a given domain A is a de 
Morgan lattice, the algebraic operations  ,  and   :         
                                                                                          

)}(),({=))(( aYaXmaxaYX   

 )}(),({=))(( aYaXminaYX   

 )(=))(( aXaX      

                                                                                                
being counterparts of the Kleene connectives[15]. We now 
consider our theory based on the theory mentioned above :     
                                                                                               

Let   },,{= truefalse  . 

Let (  , <  ) be a total order such that : 

truefalse <<  
 See 21,  in the case when 21 ee  we have : 

 

) ), , ((= 12121 esndefstefstminee   

) ), , ((= 12121 esndefstefstmaxee   

Let  SS  and  SG  we define : 
 

}   ,|{= 212121 eethatsuchGeSeeeGS 
}     |{= 21211 eethatsuchGeandSeeGS   

  }     |{ 21122 eethatsuchSeandGee     

}   ,|{ 212121 eethatsuchGeSeee   

                                                                                                   
 Let succ  be a function defined as follow :  

 succ : 
  SS 2  

           }))(),((|{=)( Resndesndeesucc ''   

4.   CTL model checking on fragments 

Theorem.1 Given ),,,(= IRLSM  a fragment of 

Kripke structure and a CTL formula, the following 
recursive algorithm compute the set of states SfH )(  

which satisfy f  or it may satisfy f  and exclude all 

states which not satisfy f .  
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   • )()(=)( pUpTpH    such that p  is an atomic 

proposition   

• )())}(,((|)({=)( fUfHsndmapSssinTfH   

• )()(=)( gHfHgfH   

• )()(=)( gHfHgfH   

• 

)}(|)({

)})(      )(  

  ))()(()().(|))(({

)}()()().(|))((({

=)(

MborderssinU

fethatsuchesucceand

fUfTesuccfSeesndinU

fHfTesuccfSeesndInT

AXfH

''
















 • 

)}(|)({

)})()()().(|))(({

)}(  )().(|))((({=)(

MborderssinU

fHfUesuccfSeesndinU

feandesuccefSeesndInTEXfH ''














  • ))(.(=)( AXZfHZAGfH   

  • ))(.(=)( AXZfHZAFfH   

  • )))(()(.(=))(( AXZfHgHZfUGAH    

After the application of the above recursive algorithm we 

have )( fHs    falsefsL =),( . The other 

operators like EG  can be all deduced from the operators 
cited above, for example ))((=)( fAFHEGfH   

for more information we refer the reader to [2]. 
 

proof  

• For the atomic proposition we can see that )( pH  is the 
set of states where the formula hold or where the formula 
may hold i.e where we are not sure that the formula is 
false  
 
 • For the case of )(AXfH  : The set 

)}()()().(|))((({ fHfTesuccfSeesndInT  

 represent the set of states where all of there successors are 
states where the formula f  holds, and the set 

'eandfUfTesuccfSeesndinU       ))()(()().(|))(({   
 )}(    )( fethatsuchesucc '  represent the set of 

states where there successors may satisfy f , hence this 
set is the set of states where )(AXfH  may be satisfied. 

Furthermore because we don't know the successors of the 
border states we add this sates to the result of computation 

)}(|)({ MborderssinU   because this states may 

satisfy the formula )(AXfH . 

  • We will prove the fix point characterization of the 
operators AGf , the fix point characterization for the 

remaining CTL operators can be established in similar 

manner. The set 
S2  of all subset of S  form a lattice 

under the set inclusion ordering. Each element 
's  of the 

lattice can also be thought of as a predicate on S  where 
the predicate is viewed as being true or may be true   for 

exactly the states in  
's . The least element in the lattice is 

the empty set, which we also refer to as False , and the 

greatest element in the lattice is the whole set S , which 

we sometimes write as True. A function that maps 
S2  to 

S2  will be called  a predicate transformer. We follow the 
same manner as in [2] first we can see that 

AXZfHZ )(=)(  is monotonic, and   -continuous 

by the theorem of Tarski and Knaster we can conclude that 
AGf is the great fix point of. AXZfHZ )(=)(  

 proposition 1:The predicate transformer 
AXZfHZ )(=)(  is monotonic 

 proof 

let 21 PP   To show that )()( 21 PP   , consider 

an arbitrary sate )( 1Ps  .Then s  satisfy f  or it may 

satisfy f . )=),(    =),((. fsLortruefsLei  and 

for all states 
's  such that Rss ' ),(  and 1Ps'  . 

Because 21 PP  , 2Ps'   as well thus )( 2Ps'   

 proposition 2:The predicate transformer 

AXZfHZ )(=)(  is   -continuous 

 
 proof 
 

We want to proof that )(=)( iiii PP   . 

first we can see that 121 )( PPP   because   is 

monotonic we have )()( 121 PPP    the same for 

)()( 221 PPP    which mean that 

))()(()( 1121 PPPP     more generale we have 

)()( iiii PP    . Furthermore we have for an 

arbitrary state ))(...)()(( 21 nPPPs    this mean 

that : )( 1Ps   and )( 2Ps  ... )( nPs   this mean 

that: fsPs may� )(( 1  and 's  such that 
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Rss ' ),(  implies that )1Ps'   and ... 

fsPs mayn � )(( 
 and 

's  such that Rss ' ),(  

implies that )n
' Ps  .  

Hence )()...( 2 nPsPs    implies fs may�  and 

)...( 21 n
' PPPs   which mean that )( ii Ps   i.e 

)()( iiii PP      

 
With an informal way we can see that at the first iteration 
we have all the state which satisfy f  or it may satisfy f , 

lets said that this set is 1Z , at the second iteration we 

compute the set of states which is in 1Z  and there 

successor satisfied f  or it may satisfied f  i.e there 

successor is in 1Z , we forward the computation on the 

successors until we reach a fix point. Hence we 
understand that we have giving to the operators AGf  the 

semantics, that we look for the states s , which has the 
property that all the states of the paths stemming from s  

satisfy f  or it may satisfy f .   

 
Example 2  lets take the fragment of the Kripke 

Structure M shown on Figure 8 in node 1, and the property 
to be checked on this fragment is )( caAG   : 

 

)()(=)( aUaTaH   ,  {(1,2)}=)(aT 
, 

,4)}(,3),{(=)(  aU , 
,4)}(,3),({(1,2),=)( aH  

,4)}(,3),{(=)( cH , )()(=)( cHaHcaH   
,4)}(,4)(,3),(,3){({(1,2)}=)( caH  

,4)}(,3),({(1,2),=)(  caH  
),4)}(,3),(.({(1,2),=))(( AXZZcaAGH    

 
(1,4)}(1,3),(1,2),{(1,1),=0Z

 

(1,4)}(1,3),(1,2),{(1,1),=

,4)}(,3),{((1,4)}(1,3),(1,2),{(1,1),=

0

0

AXZ

AXZ 

 

01 ,4)}(,3),({(1,2),= AXZZ 
 

,4)}(,3),({(1,2),=1 Z  

,4)}(,3),(,2),({(1,1),=

,4)}(,3),{(,2)}({(1,1),=

1

1




AXZ

AXZ 

 
,4)}(,3),(,2),{(=,4)}(,3),({(1,2),= 12  AXZZ   

,4)}(,3),(,2),{(=3 Z
 

 23 = ZZ
 

 Fix point reached, the algorithm stop the computation, 
from the precedent theorem. we conclude that, 

falsecaAGL =))((1,   so the final result of 
computation on the fragment in node 1 is : 

 ,4)}(,3),(,2),({(0,1),   

5.  Distributed CTL Model checking 

The main idea of the distributed verification algorithm is 

that if we want to check some formula   in some state s  
see figure 4, it is clear that the truth of formula depend on 

the truth of this formula in 
's  which is in node II. Hence 

we start the computation in node I with =),( 'sL , i.e 

we consider that the formula   may hold in 
's . when the 

node II finish the computation, if the formula hold in 
's , 

the node number I make a recomputation and found that 
the formula hold in s  for example in the case of 

)}(),(,,,,{ fUgEfUgAEFfAFfAGfEGf  and 

the result of the first computation in node I is  . If the 

formula don't hold in 
's  and the result of the first 

computation in node I is   this mean that the formula 
don't hold in s . The main difference between the 
reasoning algorithm on fragments and the distributed 
Algorithm is that in the case of 

)}(),(,,,,{ fUgEfUgAEFfAFfAGfEGf  we 

consider in the fragments algorithm that f  may hold in 

border states, but in the distributed version we consider 
the whole formula   not only f  may hold in border 

states and the truth on border states is parameter passed to 
the predicate transformer as follow : 
 
 

• ).(.= AXZYpZYAFp   

 • ).(.= EXZYpZYEFp   

 • ).(.= AXZYpZYAGp   

 • ).(.= EXZYpZYEGp   
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• ))(.(.=)( AXZpYqZYqpA    

• ))(.(.=)( EXZpYqZYqpE     
 
where  
 

}=),(    =),(|)({=   sLorTruesLMbordersY

 and   is an arbitrary formula represented by one of the 

six operator described above respectively, here Y  
represent the missing part of information in border sates ,if 
some one give us the set of border sates where the formula 
to be verified is valid we can conclude the truth of the 
formula on the whole Kripke structure, this fact can be 
represented as the application of model checking function 
to the given information. 

 
Fig .4 

 

Theorem .2 Given ),,,(= IRLSM  a fragment of 

Kripke structure , a CTL formula )( f  and 

)(= fHY b  the set )(Mborders  which satisfy 

)( f  or it may satisfy )( f  , the following recursive 

algorithm compute the set of states SfH ))((  

which satisfy )( f  or it may satisfy )( f  and exclude 

all states which not satisfy )( f . 

• )()(.=)( pUpTYpH    such that p  is an 

atomic proposition 

• )())}(,((|)(.{=)( fUfHsndmapSssinTYfH    

• )()(.=)( gHfHYgfH   

• )()(.=)( gHfHYgfH   

 • 

)}(|)({

)})(      )(  

  ))()(()().(|))(({

)}()()().(|))((.({=)(

MborderssinU

fethatsuchesucceand

fUfTesuccfSeesndinU

fHfTesuccfSeesndInTYAXfH

''


















•

)}(|)({

)})()()().(|))(({

)}(  )().(

|))((.({=)(

MborderssinU

fHfUesuccfSeesndinU

feandesuccefSe

esndInTYEXfH
''












 

)))(.((.=)( AXZYfHZYAGfH p   

 • )))(.((.=)( AXZYfHZYAFfH p   

 • )))(())(.((.=))(( AXZfHYgHZYfUGAH pp    

 

 Note : YfHfH p )(=)(  where )( fH p  is the set 

of state )(Mborders  which satisfy f  or it may 

satisfy f       

Lemma .1 
  The result of the above recursive algorithm can be 
influenced only by the truth value of formula to be verified 
on border states thus we need a recomputation only when 
the truth value on border states change.  
 

 proof 
The proof is easy, we can see that the model checking 
algorithm is a function depend only on Y  the truth value 
of the formula to be checked on border states.   
 
Lemma .2 
 
The distributed termination is reached when no change of 
the information on all border states. 

 proof 
 

using lemma.1 we can see that if there is no change in all 
border states, each instance of the distributed algorithm 
don't need to make a new computation , a hence the 
distributed algorithm reach a fix point and terminate.   

  
 Lemma .3 
 
When the termination is detected and still some value has 
undefined truth on some sates s  i.e =),( fsL , 

example in the case of cycle, this implies that : 
  

  1.  In the case of AGf =  , truefsL =),(  

  2.  In the case of AFf =  , falsefsL =),(  
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 3.  In the case of )(= 21 UAf  , falsefsL =),(                                                                                                

proof 
The proof is easy, we can see that the transition relation is 
a partial order, in the example of figure 5 we have 

1321   i.e that the truth of the formula in state 1 
depend on the truth of the formula in sate 2 and so on, 
since we know the truth of the immediate component of 
our formula (in the example is just atomic proposition P ) 
in the state present in the node, which must be true for 
arriving to this situation, we conclude the result about the 
whole Kripke.   
 

 
Fig .5 The Fragments of M distributed over Nodes 

 
Fig .6 The Kripke structure M with cycle 

 
Example 3. 
Structure M shown in Figure 7, property to be checked on 
M is )( caAG   : 

                                                                                           

 
Fig .7The Kripke structure M 

 

(3,4)}(1,4),(4,2),(2,4),(5,1),(5,5),(3,5),(2,3),{(1,2),=

},,,{=},{1,2,3,4,5=

R

cbaAPS

, }{=(5)},,{=(4)},,,{=(3)},{=(2)},{=(1) cLcbLcbaLaLbL  

 
 The partitioning of the system on three network nodes 
using the following partition function h  is shown in 
figure 8 : 

 },,{},,,,{: 32154321 nodenodenodesssssh   

 3=(5)=(3)2,=(4)1,=(2)=(1) hhhhh  

 

  
Fig .8 The Fragments of M distributed over Nodes 

                                                                 
 The application of the Algorithm on the complete M give 
the same result as in [2], {2,3,4}=) ( caAGH  , since 

all the information needed for the computation is 
available. We make the remark that in the case of the 
application of the algorithm in the complete Kripke, our 
Algorithm can be simplified to the Algorithm in [1], 
because {}=Y  and the operations   ,   will be  ,  

respectively . 
 
iteration 1: 
 
Node I : 
 

{(1,2)}=)(aH p  

 {}=)(cH p  

{(1,2)}=)( caH p   

 ,4)}(,3),{(=))((=  caAGHY B  

 ,4)}(,3),({(1,2),=)(=)(  caHYcaH p  

 ),4)}(,3),(.({(1,2),=))(( AXZZcaAGH    

(1,4)}(1,3),(1,2),{(1,1),=0Z  

 
(1,4)}(1,3),(1,2),{(1,1),=

,4)}(,3),{((1,4)}(1,3),(1,2),{(1,1),=

0

0

AXZ

AXZ 
 

 01 ,4)}(,3),({(1,2),= AXZZ   

 ,4)}(,3),({(1,2),=1 Z  

,4)}(,3),(,2),({(1,1),=

,4)}(,3),{(,2)}({(1,1),=

1

1




AXZ

AXZ 

,4)}(,3),(,2),{(=,4)}(,3),({(1,2),= 12  AXZZ 
,4)}(,3),(,2),{(=3 Z  
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23 = ZZ  

 Fix point reached, the algorithm stop the computation and 
wait new information, if possible, about his border states, 
from the theorem 2. we conclude that, 

falsecaAGL =))((1,   so the final result of 

computation on the iteration 1 in node 1 is : 
 ,4)}(,3),(,2),({(0,1),   

 
Node II : 
 

{(1,4)}=)( caH p   

,2)}{(=))((=  caAGHY B  

 (1,4)},2),{(=)(=)(  caHYcaH p  

 )(1,4)},2),.({(=))(( AXZZcaAGH    

 (1,4)}{(1,2),=0Z  

,4)}(,2),{(=0 AXZ  

,4)}(,2),{(=1 Z  

,4)}(,2),{(=1 AXZ  

 ,4)}(,2),{(=2 Z  

 23 = ZZ  

 
Node III : 

(1,5)}{(1,3),=)( caH p 
 

,4)}(,1),{(=))((=  caAGHY B  
,4)}(,1),((1,5),{(1,3),=)(=)(  caHYcaH p

),4)}(,1),((1,5),.({(1,3),=))(( AXZZcaAGH  
(1,5)}(1,4),(1,3),{(1,1),=0Z

 
(1,5)}(1,4),(1,3),{(1,1),=0AXZ

 
,5)}(,4),((1,3),,1),{(=1 Z  

,4)}(,1),{(,5)}(,3),{(=1  AXZ  
,5)}(,4),(,3),(,1),{(=1 AXZ  

,5)}(,4),(,3),(,1),{(=2 Z  
,5)}(,4),(,3),(,1),{(=3 Z

 

23 = ZZ  Fix point reached . 

iteration 2: 
 
Node III : we can make recomputing only in node III 
since from Lemma 1. only in node 3 we have a change in 
the truth of border states, because the truth value in sate 1 
is changed: 

,4)}((1,5),{(1,3),=)(  caH  

(1,5)}(1,4),(1,3),{(1,1),=0Z
 

(1,5)}(1,4),(1,3),{(1,1),=0AXZ
 

(1,5)},4),({(1,3),=1 Z  

 ,1)}(,4),(,3),{(=1 AXZ  

 ,4)}(,3),{(=2 Z  

 
,4)}(,3),{(== 23 ZZ

 
 from theorem 2. we conclude that 

falsecaAGL =))((5,   so the final result is in node 

III : (0,5)},4),(,3),{(   

using Lemma 2. because no change will happen in border 
states, the computation terminate , and the distributed 
algorithm halt in the iteration number 2. 
using Lemma 3 . we conclude that : 

truecaAGL =))((2,  , truecaAGL =))((3,  , 
truecaAGL =))((4,  . The final result of the whole 

computation on the three node is : (1,4)}(1,3),{(1,2),  

6. Conclusions and related work 

We have developing a theory of reasoning on fragments of 
MLTS using a three value logic as a base for a parallel 
model checker and presenting a natural approach for 
distributed model checking on MLTS, to the best of our 
knowledge, our algorithm is the first algorithm that use fix 
point model checking with three value logic on 
maximality labeled transition system. Closest to our work 
is the work of [19].In fact, the main problem of the 
distributed verification discussed here has been treated in 
their work, using the notion of Assumption, which is not a 
natural and easy approach for treating the problem , since 
they present there idea using an imperative paradigm 
which make the proof difficult . Furthermore they don’t 
show how to get fragments of the system to be verified, 
for that reason I think it is not easy to apply their result 
directly to the industry. Our approach has several 
advantages, First we have showing how to get the 
fragments from a standard language and with a semantic 
model which allow the design of systems by action 
refinement, second we have making a little change to the 
approach of verification, all this make our idea easy to 
apply it for industry. Another work similar to our work in 
the principle of using three value logic of Kleen on partial 
Kripke structure was introduced by [16] but our algorithm 
is different from their Algorithm since they use a two pass 
, the first one is optimistic which consider the   as true, 
the second pessimistic which consider the   as false, 
hence the result of the Algorithm have four results (false, 
false) <(true, false) < (false, true) < (true, true), for that 
reason we think that our approach is the best since it is 
easy to adapt it for distributed Model checking. another 
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interesting work is the work of [20] which define a multi 
valued model checking , which is more general than our 
work, this work miss an application, our work can be 
considered as an application with special case using three 
value logic. 
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