
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 5, March 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

26

Integrating User’s Domain Knowledge
with Association Rule Mining

Vikram Singh and Sapna Nagpal
Department of Computer Science & Engineering

Chaudhary Devi Lal University, Sirsa (Haryana) INDIA.

Abstract

This paper presents a variation of Apriori algorithm that
includes the role of domain expert to guide and speed up the
overall knowledge discovery task. Usually, the user is
interested in finding relationships between certain attributes
instead of the whole dataset. Moreover, he can help the mining
algorithm to select the target database which in turn takes less
time to find the desired association rules. Variants of the
standard Apriori and Interactive Apriori algorithms have been
run on artificial datasets. The results show that incorporating
user’s preference in selection of target attribute helps to search
the association rules efficiently both in terms of space and time.

Keywords: Domain, association rule, data mining, Apriori,
interactive Apriori.

1. Introduction

Association rule is described as an associational
relationship between a group of objects in a database
[13]. Let D be a transaction database and I = {i1, i2, ..im}
be an itemset. Transaction database D contains a
sequence of transactions T = {t1, t2, .. tn} (where T I)
with a sole identifier. An association rule X→Y may be
discovered in the data where X and Y are conjunctions of
items and X ∩ Y = . The intuitive meaning of such a
rule is that transactions in the database which contains
the items in X tend to also contain the items in Y. The
user supplies minimum support and confidence
thresholds. The support of the rule X→Y represents the
percentage of transactions from the original database that
contain both X and Y. The confidence of the rule X→Y
represents the percentage of transactions containing
items in X that also contains items in Y. A rule that
satisfies both minimum support and minimum
confidence at the same time has been described as strong
rule in the literature [2].

All the rules that meet the confidence threshold are
reported as rules mined by the algorithm. The process of
mining of association rules is broken up into two steps
[3]:

(i) Find all the frequent itemsets in the database (i.e. the
itemsets with support greater than the minimum support).

(ii) The confidence of the rule X→Y that satisfy
minimum support is calculated as follows:

Confidence(X→Y) = support(XY)/support(Y)

1.1 Literature Survey

Association rules were first introduced by Agarwal et. al.
in [1]. Their subsequent paper [3] discusses Apriori
algorithm that is considered as one of the most important
contributions to the subject of data mining. Although,
other algorithms such as AIS [2] and SETM [7] are also
available for mining association rules, yet Apriori
remains the most widely used approach for generating
frequent itemsets. The algorithm accomplishes the
searching of frequent itemsets in recursive order. It first
scans the database D and calculates the support of each
single item in every record I in D, and denotes it as C1.
Out of the itemsets in C1, the algorithm computes the set
L1 containing the frequent 1-itemsets. In the kth scan of
the database, it generates all the new itemset candidates
using the set Lk-1 of frequent (k-1) itemsets discovered in
the previous scanning and denotes it as Ck. And the
itemsets whose support is greater than the minimum
support threshold are kept in Lk. This process is repeated
until no new frequent itemsets are found.

Table 1: Dataset D

Tid Items
10 AB
20 ABE
30 ABCE
40 CD

The Apriori approach of searching frequent itemsets is
explained with the database of Table 1. The algorithm
assumes the minimum support threshold to be “2”.
Firstly, it initializes C1 as the set of all items, takes count
of elements in it, and puts in L1 the elements satisfying
the minimum support. Thereafter, set C2 is generated
using L1 and count of the elements is computed from the
scan of database D. The frequent itemsets from C2 are
kept in the set L2. In the similar way, L3 is generated. As

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 5, March 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

27

there is a single itemset in L3, the set C4 is empty. So, this
arithmetic comes to an end (min_support = 2). This has
been explained in figure 1.

Fig. 1. Finding set of candidate and frequent itemsets with
Apriori.

1.2 Generation of Association Rules

With the generation of frequent itemsets, the process of
finding association rules begins. For every frequent
itemset X, take non-empty subsets Y (YX , Y≠)
such that confidence (Y→ (X-Y)) ≥ minconf, an
association rule “Y→ (X-Y)” is reported where
confidence can be ascertained with Equation (1).
support_count(Y X-Y) is the number of transactions

containing itemsets (Y X-Y) and support_count(Y) is
the number of transactions containing itemset Y.

confidence(Y→(X-Y))=
)(_sup

)((_sup

Ycountport

YXYcountport (1)

2. Mining with User’s Guidance

Association rules are useful in data mining only if the
mining analyst has a prior rough idea of what it is he is
looking for. The key to knowledge discovery, therefore,
is the user’s domain knowledge. The domain expert has
useful knowledge about the database which is not
explicitly presented in the database [9]. This highlights
the fact that there is no algorithm that will automatically
furnish everything that is of interest in the database. An
algorithm that finds a lot of useful rules will probably
also find a lot of useless rules, while an algorithm that
finds only a limited number of associations will probably
also miss a lot of interesting information.

This discussion indicates that domain user must be
involved in the process of finding association rules in the

data sets. The domain user provides his suggestions and
demands on the data mining result that tunes the process
of rule discovery instead of proceeding in an unguided
manner. A modification of Apriori that contains user’s
intervention in the processing of the algorithm is
presented in the next section. The user at the first step
provides some demands on the mining result that
basically indicates what the user wants to see in the
result. Accordingly the database is scrutinized on the
particular attributes and it becomes the working database
of the algorithm. Then the algorithm searches for
associations among the attributes selected by the user. In
this manner the user gets the association rules without
exploring the whole database.

3. Interactive Association Rule Mining

The approach of user interactive association rule mining
is embodied in IAR algorithm. The IAR is a variation of
Apriori algorithm. The Apriori algorithm typically
identifies the patterns that occur in the whole database.
But what if the user is interested in particular attributes
and wants to check if there is some associational
relationship containing the attributes in the database. In
such case it is irrelevant to do exhaustive search in the
database. The IAR algorithm includes interaction points
for the domain user to give attribute specification if any.
The database is then scrutinized according to the
specified attribute(s) i.e. the transactions not containing
the attributes given by the user are excluded and a
working database is created. With this subset of the
dataset, the Apriori procedure searches for frequent large
itemsets. Although the search dataset is scrutinized but
the support for the potential large itemsets is calculated
with respect to the original database. The Interactive
Association Rule (IAR) algorithm is presented in Fig 2.

D′ := subset of D containing transactions having the
 attributes specified by the user.

// (D′ is the working database)
L1:= {frequent 1-itemsets};
k:=2; //k represents the pass number.
while(Lk-1≠)

Ck:= new candidates of size k
generated from Lk-1

for all transactions tD
increment count of all candidates in Ck

that are contained in t
Lk := all candidates in Ck

with minimum support
k := k+1

Report Uk Lkas the discovered frequent itemsets

C1

C2

C3

L1

L2

L3

Itemset Count
{A} 3
{B} 3
{C} 2
{D} 1
{E} 2

Itemset Count
{AB} 3
{AC} 1
{AE} 2
{BC} 1
{BE} 2
{CE} 1

Itemset Count
{ABE} 2

Itemset Count
{A} 3
{B} 3
{C} 2
{E} 2

Itemset Count
{AB} 3
{AE} 2
{BE} 2

Itemset Count
{ABE} 2

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 5, March 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

28

Fig. 2. The Interactive Apriori Algorithm (IAR).

Since searching the database for associational
relationship is heavy task in large datasets, the time is
saved as irrelevant records (in which user is not
interested) are excluded from the database. The attributes
in the database are randomly distributed; it may reduce
the size of working dataset from half to even more
fraction.

Considering the same example database of Table 1, here
is how IAR algorithm works. At first it takes attribute
preferences from the user. Suppose the user is interested
in attribute B and wants to see if there is any frequent
itemset containing itemset B. The IAR algorithm, at the
first step, scrutinizes the database and creates a working
database D′ from D. D′ contains transactions containing
attribute B only (table 2). D′ contains 3 transactions, Tid
40 is not included in D′ as this doesn’t contain B. Size of
the working database is thus reduced and it takes less
time in all the scans of the database in the searching
process of the algorithm. As shown in figure 3, the size
of Ck and Lk get reduced starting from the first step. In
this way there is no need to do an exhaustive search of
the database if the user is interested in knowing the
associational relationship containing a particular
attribute.

Table 2: Dataset D′

Tid Items
10 AB
20 ABE
30 ABCE

3.1 Generation of Association Rules using frequent
itemsets

The frequent itemsets found in the previous step are used
to generate association rules. All the permutations and
combinations of the items present in the frequent
itemsets are considered as candidates for strong rules. A
lot of rules will be generated in this way. A strong rule is
one which has atleast minimum confidence which is
computed by the Eq. (1) (see section 1.1).

It is important to note that the discovered rules contain
the user specified attributes on the LHS and derives other
attributes in the database. If such a rule possesses high
confidence level then it could be valuable in the
marketing context for the organization. In this way a lot
of time can be saved and the user trusts more in the
discovered rules.

Fig. 3. Finding set of candidate and frequent itemsets

with IAR.

4. Experimentation

For the purpose of performance evaluation IAR
algorithm in discovering frequent itemsets, both Apriori
and IAR have been run on the same platform under same
conditions. Various parameters were computed for the
purpose of comparison and the results have been shown
in tables 3 and 4 and figure 4. The experimental runs
have been conducted with two support levels and
different sized datasets. It has been found that the IAR
algorithm always takes less time and storage space than
the standard Apriori. The interesting information can be
mined in a shorter time. The test dataset has 7 attributes.
The data was generated by artificial transactions to
evaluate the performance of the algorithm over a range
of data characteristics. The attributes are numbered
starting from 1 and going in sequence. Any database of
real world can be used with this algorithm by converting
the attribute names to 1, 2, 3 and so on.

The algorithms use T-tree data structure to store frequent
item set information. A T-tree is a “reverse" set
enumeration tree where each level of the tree is defined
in terms of an array. The storage requirement for each
node (representing a frequent item set) in the T-tree is 12
bytes for a) reference to T-tree node structure (4 Bytes),
b) support count field in T-tree node structure (4 Bytes)
and c) reference to child array field in T-tree node
structure (4 Bytes) [8].

Both the algorithms were compared with respect to the
number of nodes in the T-tree structure, updates required
to in T-tree to find large itemsets and the storage of T-
tree in bytes as shown in Table 3 and 4. However the

C2

C3

L1

L2

L3

Itemset Count
{A} 3
{B} 3
{C} 1
{E} 2

Itemset Count
{AB} 3
{AE} 2
{BE} 2

Itemset Count
{ABE} 2

Itemset Count
{A} 3
{B} 3
{E} 2

Itemset Count
{AB} 3
{AE} 2
{BE} 2

Itemset Count
{ABE} 2

C1

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 5, March 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

29

Table 3: Values of parameters with support level 20 percent

Table 4: Values of parameters with support level 30 percent
Data
Size

Number of frequent
itemsets

Number of nodes in
T-tree

Number of Updates
required in T-tree

Storage of T-tree in
bytes

Apriori IAR Apriori IAR Apriori IAR Apriori IAR

2K 20 9 33 14 22630 8883 324 148
10K 17 7 33 13 110607 40556 276 144
30K 15 5 30 10 291806 85866 240 140
50K 15 5 30 10 482533 141980 240 140
120K 15 5 30 10 1167228 342575 240 140

most important factor is time. IAR always takes less time
than Apriori. The time comparison of both the algorithms
is shown in Figure 4. It must be noted that the time taken
and other parameters may differ for different runs as the
data is generated randomly. Also the behaviour of IAR
need not be same for different attributes specified by the
user. But it always takes less time and storage than
Apriori. It must also be noted that IAR does not do
exhaustive search instead it finds association rule
containing the attributes specification given by the user.

(a) Support level 20%

(b) Support level 30%

Fig. 4. Temporal performance of Apriori (red - upper)

and IAR (blue – lower) ((a) & (b)).

5. Conclusion

Among the various data mining techniques, rules are the
most appropriate for integrating human opinions,
because human thoughts can be converted into rules
relatively easier than into some other form. User’s

Data
Size

Number of frequent
itemsets

Number of nodes in
T-tree

Number of Updates
required in T-tree

Storage of T-tree in
bytes

Apriori IAR Apriori IAR Apriori IAR Apriori IAR

2K 31 15 43 20 26458 11722 496 244
10K 32 13 45 19 132503 48566 504 212
30K 28 13 41 19 336547 128218 476 248
50K 30 15 42 18 574843 240544 484 272
120K 28 15 41 21 1346085 589970 476 280

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 5, March 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

30

suggestions and demands can be incorporated in the
process to transfer domain knowledge that results in less
and shorter iterations within the knowledge discovery
loop.

This paper presents IAR algorithm that is a variation of
standard Apriori algorithm to include user’s role in
finding interesting association among items in a
database. The two algorithm are compared using
different data sizes and support levels. The IAR always
outperforms Apriori and the performance enhances as the
data size increases. The domain user’s knowledge may
contribute the discovery of interested patterns.

References

[1] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient
similarity search in sequence databases”, in thr
Proceedings of the Fourth International Conference
on Foundations of Data Organization and
Algorithms, 1993, Vol. 730, pp. 69-84.

[2] R. Agrawal, T. Imielinski, and A. Swami, “Mining
association rules between sets of items in large
databases” in the Proceedings of the 1993 ACM
SIGMOD International Conference on Management
of Data, 1993, pp. 207-216.

[3] R. Agrawal, and R. Srikant, “Fast Algorithms for
Mining Association Rule”, in the Proceedings of the
20th International Conference on Very Large
Databases (VLDB), 1994, pp. 487 – 499.

[4] M. Ankerest, “Human Involvement and Interactivity
of the Next generation’s Data Mining Tools”, in
ACM SIGMOD Workshop on Research Issues in
Data Mining and Knowledge Discovery, Santa
Barbara, CA, 2001.

[5] U. Fayyad, G.P. Shapiro, and P. Smyth, “The KDD
Process for Extracting Useful Knowledge from
Volumes of Data”, in Communications of ACM,
1996, Vol. 39, pp. 27-34.

[6] J. Han, and M. Kamber, Data Mining: Concepts and
Techniques, Morgan Kaufmann, 2006.

[7] M.A.W. Houtsma, and A.N. Swami, “Set-Oriented
Mining for Association Rules in Relational
Databases”, in the Proceedings of the Eleventh
International Conference on Data Engineering,
1993, pp. 25-33.

[8] T. J Lehman and M. J. Carey, “A Study of Index
Structures for Main Memory Database Management
Systems”, in the Proceedings of the 12th
International Conference on Very Large Data Bases,
1986, pp. 294-303..

[9] M. M. Owrang, and F. H. Grupe, “Using domain
knowledge to guide database knowledge discovery”,
in Expert System with Application, 1996, Vol.10,
pp. 173-180.

[10] S. Y. Sung, Z. Li, C.L. Tan, and P.A. Ng,
“Forecasting Association Rules Using Existing Data
Sets”, in IEEE Transactions On Knowledge And
Data Engineering, 2003, Vol. 15, pp. 1448-1459.

[11] D.X. Wang, X.Z. Hu, , X.P. Liu, and H. Wang,
“Association Rule Mining on Concept Lattice Using
Domain Knowledge”, in the Proceedings of Fourth
International Conference on Machine Learning and
Cybernetics, Guangzhou, 2005, Vol.4, pp. 2151-
2154.

[12] R. Wille, Restructuring Lattice Theory: An
Approach Based on Hierarchies on Concepts in
Ordered Sets, Rival, Boston, 1982, pp. 445-470.

[13] S. Zhang, S. Liu, D. Wang, J. Ou, and G. Wang,
“Knowledge Discovery of Improved Apriori-based
High-Rise Structure Intelligent Form Selection”, in
the Proceedings of the Sixth International
Conference on Intelligent Systems Design and
Applications, 2006, Vol.1, pp. 535-539.

