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Abstract 

This paper presents a variation of Apriori algorithm that 
includes the role of domain expert to guide and speed up the 
overall knowledge discovery task. Usually, the user is 
interested in finding relationships between certain attributes 
instead of the whole dataset. Moreover, he can help the mining 
algorithm to select the target database which in turn takes less 
time to find the desired association rules. Variants of the 
standard Apriori and Interactive Apriori algorithms have been 
run on artificial datasets. The results show that incorporating 
user’s preference in selection of target attribute helps to search 
the association rules efficiently both in terms of space and time. 

Keywords: Domain, association rule, data mining, Apriori, 
interactive Apriori. 

1. Introduction 

Association rule is described as an associational 
relationship between a group of objects in a database 
[13]. Let D be a transaction database and I = {i1, i2, ..im} 
be an itemset. Transaction database D contains a 
sequence of transactions T = {t1, t2, .. tn} (where T   I) 
with a sole identifier. An association rule X→Y may be 
discovered in the data where X and Y are conjunctions of 
items and X ∩ Y = . The intuitive meaning of such a 
rule is that transactions in the database which contains 
the items in X tend to also contain the items in Y. The 
user supplies minimum support and confidence 
thresholds. The support of the rule X→Y represents the 
percentage of transactions from the original database that 
contain both X and Y. The confidence of the rule X→Y 
represents the percentage of transactions containing 
items in X that also contains items in Y. A rule that 
satisfies both minimum support and minimum 
confidence at the same time has been described as strong 
rule in the literature [2].  
 
All the rules that meet the confidence threshold are 
reported as rules mined by the algorithm. The process of 
mining of association rules is broken up into two steps 
[3]: 
 
(i) Find all the frequent itemsets in the database (i.e. the 
itemsets with support greater than the minimum support). 

 
 
 
(ii) The confidence of the rule X→Y that satisfy 
minimum support is calculated as follows: 
 
Confidence(X→Y) = support(XY)/support(Y) 
 
1.1 Literature Survey 
 
Association rules were first introduced by Agarwal et. al. 
in [1]. Their subsequent paper [3] discusses Apriori 
algorithm that is considered as one of the most important 
contributions to the subject of data mining. Although, 
other algorithms such as AIS [2] and SETM [7] are also 
available for mining association rules, yet Apriori 
remains the most widely used approach for generating 
frequent itemsets. The algorithm accomplishes the 
searching of frequent itemsets in recursive order. It first 
scans the database D and calculates the support of each 
single item in every record I in D, and denotes it as C1. 
Out of the itemsets in C1, the algorithm computes the set 
L1 containing the frequent 1-itemsets. In the kth scan of 
the database, it generates all the new itemset candidates 
using the set Lk-1 of frequent (k-1) itemsets discovered in 
the previous scanning and denotes it as Ck. And the 
itemsets whose support is greater than the minimum 
support threshold are kept in Lk. This process is repeated 
until no new frequent itemsets are found. 

 
Table 1: Dataset D 

Tid Items 
10 AB 
20 ABE 
30 ABCE 
40 CD 

 
The Apriori approach of searching frequent itemsets is 
explained with the database of Table 1. The algorithm 
assumes the minimum support threshold to be “2”. 
Firstly, it initializes C1 as the set of all items, takes count 
of elements in it, and puts in L1 the elements satisfying 
the minimum support. Thereafter, set C2 is generated 
using L1 and count of the elements is computed from the 
scan of database D. The frequent itemsets from C2 are 
kept in the set L2. In the similar way, L3 is generated. As 
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there is a single itemset in L3, the set C4 is empty. So, this 
arithmetic comes to an end (min_support = 2). This has 
been explained in figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Finding set of candidate and frequent itemsets with 
Apriori. 
 
1.2 Generation of Association Rules  
 
With the generation of frequent itemsets, the process of 
finding association rules begins. For every frequent 
itemset  X, take non-empty subsets Y (YX , Y≠ ) 
such that confidence (Y→ (X-Y)) ≥ minconf, an 
association rule “Y→ (X-Y)” is reported where 
confidence can be ascertained with Equation (1). 
support_count(Y   X-Y) is the number of transactions 

containing itemsets (Y   X-Y) and support_count(Y) is 
the number of transactions containing itemset Y.  
 

confidence(Y→(X-Y))=
)(_sup

)((_sup

Ycountport

YXYcountport    (1) 

2. Mining with User’s Guidance  

Association rules are useful in data mining only if the 
mining analyst has a prior rough idea of what it is he is 
looking for. The key to knowledge discovery, therefore, 
is the user’s domain knowledge. The domain expert has 
useful knowledge about the database which is not 
explicitly presented in the database [9]. This highlights 
the fact that there is no algorithm that will automatically 
furnish everything that is of interest in the database. An 
algorithm that finds a lot of  useful rules will probably 
also find a lot of useless rules, while an algorithm that 
finds only a limited number of associations will probably 
also miss a lot of interesting information. 
 
This discussion indicates that domain user must be 
involved in the process of finding association rules in the 

data sets. The domain user provides his suggestions and 
demands on the data mining result that tunes the process 
of rule discovery instead of proceeding in an unguided 
manner. A modification of Apriori that contains user’s 
intervention in the processing of the algorithm is 
presented in the next section. The user at the first step 
provides some demands on the mining result that 
basically indicates what the user wants to see in the 
result. Accordingly the database is scrutinized on the 
particular attributes and it becomes the working database 
of the algorithm. Then the algorithm searches for 
associations among the attributes selected by the user.  In 
this manner the user gets the association rules without 
exploring the whole database. 

3. Interactive Association Rule Mining  

The approach of user interactive association rule mining 
is embodied in IAR algorithm. The IAR is a variation of 
Apriori algorithm. The Apriori algorithm typically 
identifies the patterns that occur in the whole database. 
But what if the user is interested in particular attributes 
and wants to check if there is some associational 
relationship containing the attributes in the database. In 
such case it is irrelevant to do exhaustive search in the 
database. The IAR algorithm includes interaction points 
for the domain user to give attribute specification if any. 
The database is then scrutinized according to the 
specified attribute(s) i.e. the transactions not containing 
the attributes given by the user are excluded and a 
working database is created. With this subset of the 
dataset, the Apriori procedure searches for frequent large 
itemsets. Although the search dataset is scrutinized but 
the support for the potential large itemsets is calculated 
with respect to the original database. The Interactive 
Association Rule (IAR) algorithm is presented in Fig 2. 

 
 

D′ := subset of D containing transactions having the  
 attributes specified by the user. 

// (D′ is the working database) 
L1:= {frequent 1-itemsets}; 
k:=2; //k represents the pass number. 
while(Lk-1≠  ) 

Ck:= new candidates of size k  
generated from Lk-1 

for all transactions tD 
increment count of all candidates in Ck  

that are contained in t 
Lk :=  all candidates in Ck 

with minimum support 
k := k+1 

Report Uk Lkas the discovered frequent itemsets 

C1 

C2 

C3 

L1 

L2 

L3 

Itemset Count 
{A} 3 
{B} 3 
{C} 2 
{D} 1 
{E} 2 

Itemset Count 
{AB} 3 
{AC} 1 
{AE} 2 
{BC} 1 
{BE} 2 
{CE} 1 

Itemset Count 
{ABE} 2 

Itemset Count 
{A} 3 
{B} 3 
{C} 2 
{E} 2 

Itemset Count 
{AB} 3 
{AE} 2 
{BE} 2 

Itemset Count 
{ABE} 2 
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Fig. 2. The Interactive Apriori Algorithm (IAR). 
 
Since searching the database for associational 
relationship is heavy task in large datasets, the time is 
saved as irrelevant records (in which user is not 
interested) are excluded from the database. The attributes 
in the database are randomly distributed; it may reduce 
the size of working dataset from half to even more 
fraction.  
 
Considering the same example database of Table 1, here 
is how IAR algorithm works. At first it takes attribute 
preferences from the user. Suppose the user is interested 
in attribute B and wants to see if there is any frequent 
itemset containing itemset B. The IAR algorithm, at the 
first step, scrutinizes the database and creates a working 
database D′ from D. D′ contains transactions containing 
attribute B only (table 2). D′ contains 3 transactions, Tid 
40 is not included in D′ as this doesn’t contain B. Size of 
the working database is thus reduced and it takes less 
time in all the scans of the database in the searching 
process of the algorithm. As shown in figure 3, the size 
of Ck and Lk get reduced starting from the first step. In 
this way there is no need to do an exhaustive search of 
the database if the user is interested in knowing the 
associational relationship containing a particular 
attribute. 

 
Table 2: Dataset D′ 

Tid Items 
10 AB 
20 ABE 
30 ABCE 

 
 

3.1 Generation of Association Rules using frequent 
itemsets 
 
The frequent itemsets found in the previous step are used 
to generate association rules. All the permutations and 
combinations of the items present in the frequent 
itemsets are considered as candidates for strong rules. A 
lot of rules will be generated in this way. A strong rule is 
one which has atleast minimum confidence which is 
computed by the Eq. (1) (see section 1.1). 
 
It is important to note that the discovered rules contain 
the user specified attributes on the LHS and derives other 
attributes in the database. If such a rule possesses high 
confidence level then it could be valuable in the 
marketing context for the organization. In this way a lot 
of time can be saved and the user trusts more in the 
discovered rules. 

 

 

 

 

 

 

 

 
Fig. 3. Finding set of candidate and frequent itemsets 

with IAR. 

4. Experimentation  

For the purpose of performance evaluation IAR 
algorithm in discovering frequent itemsets, both Apriori 
and IAR have been run on the same platform under same 
conditions. Various parameters were computed for the 
purpose of comparison and the results have been shown 
in tables 3 and 4 and figure 4. The experimental runs 
have been conducted with two support levels and 
different sized datasets. It has been found that the IAR 
algorithm always takes less time and storage space than 
the standard Apriori. The interesting information can be 
mined in a shorter time. The test dataset has 7 attributes. 
The data was generated by artificial transactions to 
evaluate the performance of the algorithm over a range 
of data characteristics. The attributes are numbered 
starting from 1 and going in sequence. Any database of 
real world can be used with this algorithm by converting 
the attribute names to 1, 2, 3 and so on.  
 
The algorithms use T-tree data structure to store frequent 
item set information. A T-tree is a “reverse" set 
enumeration tree where each level of the tree is defined 
in terms of an array. The storage requirement for each 
node (representing a frequent item set) in the T-tree is 12 
bytes for a) reference to T-tree node structure (4 Bytes), 
b) support count field in T-tree node structure (4 Bytes) 
and c) reference to child array field in T-tree node 
structure (4 Bytes) [8]. 
 
Both the algorithms were compared with respect to the 
number of nodes in the T-tree structure, updates required 
to in T-tree to find large itemsets and the storage of T-
tree in bytes as shown in Table 3 and 4. However the  

C2 

C3 

L1 

L2 

L3 

Itemset Count 
{A} 3 
{B} 3 
{C} 1 
{E} 2 

Itemset Count 
{AB} 3 
{AE} 2 
{BE} 2 

Itemset Count 
{ABE} 2

Itemset Count 
{A} 3 
{B} 3 
{E} 2 

Itemset Count 
{AB} 3 
{AE} 2 
{BE} 2 

Itemset Count 
{ABE} 2

C1 
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Table 3: Values of parameters with support level 20 percent 
 

 
 
 
 
 
 
 
 
 
 

 
Table 4: Values of parameters with support level 30 percent 
Data 
Size 

Number of frequent 
itemsets 

Number of nodes in 
T-tree 

Number of Updates 
required in T-tree 

Storage of T-tree in 
bytes 

Apriori IAR Apriori IAR Apriori IAR Apriori IAR 

2K 20 9 33 14 22630 8883 324 148 
10K 17 7 33 13 110607 40556 276 144 
30K 15 5 30 10 291806 85866 240 140 
50K 15 5 30 10 482533 141980 240 140 
120K 15 5 30 10 1167228 342575 240 140 
 
most important factor is time. IAR always takes less time 
than Apriori. The time comparison of both the algorithms 
is shown in Figure 4. It must be noted that the time taken 
and other parameters may differ for different runs as the 
data is generated randomly. Also the behaviour of IAR 
need not be same for different attributes specified by the 
user. But it always takes less time and storage than 
Apriori. It must also be noted that IAR does not do 
exhaustive search instead it finds association rule 
containing the attributes specification given by the user. 

    

(a) Support level 20% 

 

 

(b)  Support level 30% 
 
Fig. 4. Temporal performance of Apriori (red - upper) 

and IAR (blue – lower) ((a) & (b)). 

5. Conclusion 

Among the various data mining techniques, rules are the 
most appropriate for integrating human opinions, 
because human thoughts can be converted into rules 
relatively easier than into some other form. User’s 

Data 
Size 

Number of frequent 
itemsets 

Number of nodes in 
T-tree 

Number of Updates 
required in T-tree 

Storage of T-tree in 
bytes 

Apriori IAR Apriori IAR Apriori IAR Apriori IAR 

2K 31 15 43 20 26458 11722 496 244 
10K 32 13 45 19 132503 48566 504 212 
30K 28 13 41 19 336547 128218 476 248 
50K 30 15 42 18 574843 240544 484 272 
120K 28 15 41 21 1346085 589970 476 280 
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suggestions and demands can be incorporated in the 
process to transfer domain knowledge that results in less 
and shorter iterations within the knowledge discovery 
loop. 
 
This paper presents IAR algorithm that is a variation of 
standard Apriori algorithm to include user’s role in 
finding interesting association among items in a 
database. The two algorithm are compared using 
different data sizes and support levels. The IAR always 
outperforms Apriori and the performance enhances as the 
data size increases. The domain user’s knowledge may 
contribute the discovery of interested patterns.  
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