
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 4, March 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

31

Neuroevolutionary optimization

Eva Volna1

 1 Department of Computer Science, University of Ostrava
Ostrava, 70103, Czech Republic

Abstract

This paper presents an application of evolutionary search
procedures to artificial neural networks. Here, we can distinguish
among three kinds of evolution in artificial neural networks, i.e.
the evolution of connection weights, of architectures, and of
learning rules. We review each kind of evolution in detail and
analyse critical issues related to different evolutions. This article
concentrates on finding the suitable way of using evolutionary
algorithms for optimizing the artificial neural network
parameters.
Keywords: evolutionary algorithms, artificial neural networks.

1. Introduction

Research on potential interactions between connectionist
learning system, i.e. artificial neural networks, and
evolutionary search procedures has attracted a lot of
attention recently. We can distinguish among three kinds
of evolution in artificial neural networks, i.e. the evolution
of connection weights, of architectures, and of learning
rules. Under neuroevolution we can understand the
connection of evolutionary algorithms and artificial neural
networks - that is the using of evolutionary algorithm
properties in suggestion of artificial neural network
architecture and upon work with them.

Evolutionary algorithms are the term for different
approaches as of using the models of evolutionary
processes, which have nothing common with biology.
They try to use the conception of driving forces of
organism’s evolution for optimization purposes.
Evolutionary algorithms refer to a class of population-
based stochastic search algorithms that are developed from
ideas and principles of natural evolution. They include:
evolution strategies, evolutionary programming, genetic
algorithms etc. All these models work with random
changes of submitted solutions. Optimization is
considered here as a synonym for minimization. This is
not a problem because going in search the function
maximum is equivalent to going in search of function
minimum multiplied by -1. One important feature of all
these algorithms is their population-based search strategy.
Individuals in a population compete and exchange

information with each other in order to perform certain
tasks. The individual within the evolutionary algorithm is
then the problem solution. If a new solution is better, it
substitutes the previous one. The choice of the right
representation of individuals and their fitness create the
essence of the advantageousness of the evolutionary
algorithm, which depends on the selection of suitable
choice of evolutionary algorithm and its appropriate
operators.

An artificial neural network is characterized by its pattern
of connections between the neurons (architecture), its
method of determining the weights on the connections
(adaptation), and its activation function. Neural network
architecture can be described as a directed graph in which
each neuron i performs a transfer function fi of the form
(1):

n

j
ijijii xwfy

1

 (1)

where yi is the output of the neuron i, xj is the jth input
to neuron i and wij is the connection weight between
neurons i a j. i is the threshold (or bias) of the neuron
i. Usually, the activation function fi is nonlinear, such as a
sigmoid, or Gaussian function. Learning in artificial neural
networks can roughly be divided into supervised,
unsupervised, and reinforcement learning. Supervised
learning is based on direct comparison between the actual
output of an artificial neural network and the desired
correct output, also known as the target output. It is often
formulated as the minimization of an error function such
as the total mean square error between the actual output
and the desired output summed over all available data (2):

m

j

n

i
jii tyE

1 1

2

2

1
 (2)

where yi is the actual output of the neuron i, ti is the
desired correct output of the neuron i, n is a number of
output neurons, and m is a number of training patters. A
gradient descent-based optimization algorithm such as
backpropagation can be used to adjust connection weights
in the artificial neural network iteratively in order to
minimize the error (2). Reinforcement learning is a special

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 4, March 2010
www.IJCSI.org

32

case of supervised learning where the exact desired output
is unknown. It is based only on the information of whether
or not the actual output is correct. Unsupervised learning
is solely based on the correlations among input data. The
essence of a learning algorithm is the learning rule, i.e., a
weight-updating rule that determines how connection
weights are changed. Examples of popular learning rules
include the delta rule, the Hebbian rule, the competitive
learning rule, etc. are discussed in numerous publications
[1].

2. Evolution in artificial neural networks

Evolution has been introduced into artificial neural
networks at roughly three different levels: connection
weights, architectures, and learning rules. The evolution of
connection weights introduces an adaptive and global
approach to problem solution. The evolution of
architectures enables artificial neural networks to adapt
their topologies to different tasks without human
intervention and thus provides an approach to automatic
artificial neural network design. The evolution of learning
rules can be regarded as a process of “learning to learn” in
artificial neural networks, where the adaptation of learning
rules is achieved through evolution.

2.1 The evolution of connection weights

The evolutionary approach to weight training in artificial
neural networks consists of two major phases. The first
phase means to decide the representation of connection
weights. The second one means the evolutionary process
simulated by evolutionary algorithms.

The most convenient representation of connection weights
is, from evolutionary algorithm’s perspective, binary
string. In such a representation scheme, each connection
weight is represented by a number of bits of a certain
length. An artificial neural network is encoded by
concatenation of all the connection weights of the network
into the chromosome. The order of the concatenation is,
however, essentially ignored, although it can affect the
performance of evolutionary training, e.g. training time
and accuracy. The advantages of the binary representation
lie in its simplicity and generality. It is straightforward to
apply classical crossover (such as one-point or uniform
crossover) and mutation to binary strings. A limitation of
binary representation is the representation precision of
discrete connection weights. It is still an open question
how to optimize the number of bits for each connection
weight, the range encoded, and the encoding method used
although dynamic techniques could be adopted to alleviate
the problem.

To overcome some shortcomings of the binary
representation scheme, real numbers themselves proposed
to represent connection weights directly, i.e. one real
number per connection weight. The chromosome is
represented by the concatenation of these real numbers,
where their order is important. As connection weights are
represented by real numbers, each individual in an
evolving population is a real vector. Standard search
operators dealing with binary strings cannot be applied
directly in the real representation scheme. In such
circumstances, an important task is to design carefully a
set of genetic operators, which are suitable for the real
representation as well as artificial neural network’s
training, in order to improve the speed and accuracy of the
evolutionary training. Single real numbers are often
changed by average crossover, random mutation or other
domain specific genetic operators. It is discussed in [2].
The major aim is to retain useful functional blocks during
evolution, i.e., to form and keep useful feature detectors in
an artificial neural network.
Evolutionary algorithms are usually based on a global
search algorithm, thus can escape from a local minimum,
while a gradient descent algorithm can only find a local
optimum in a neighborhood of the initial solution. An
evolutionary algorithm sets no restriction on types of
artificial neural networks being trained as long as a
suitable fitness function can be defined properly, thus can
deal with a wide range of artificial neural networks:
recurrent artificial neural networks, high-order artificial
neural networks, fuzzy artificial neural networks etc. An
assignment of the most acceptable evolutionary algorithm
to a task represents always a big problem, because each
search procedure is suitable only for a class of error
(fitness) functions with certain types of landscape, the
issue of what kind of search procedure is more suitable for
which class of error (fitness) function is an important
research topic of general interest. The efficiency of
evolutionary training can be improved significantly by
incorporating a local search procedure into the evolution,
i.e., combining evolutionary algorithm’s global search
ability with local search’s ability to fine tune. Evolutionary
algorithms can be used to locate a good region in the space
and a local search procedure is used to find a near-optimal
solution in this region. The obtained results showed that
the hybrid GA/BP approach was more efficient than if
either the genetic or backpropagation algorithm alone
were used, because genetic algorithms are much better at
local good initial weights than the random start
backpropagation method. Similar work on the evolution of
initial weights has also been done on competitive learning
neural networks and Kohonen networks [3]. One of the
problems faced by evolutionary training of artificial neural
networks is the permutation problem [4], also known as
the competing convention problem. It is caused by the

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 4, March 2010
www.IJCSI.org

33

many-to-one mapping from the representation (genotype)
to the actual artificial neural network (phenotype) since
two artificial neural networks that order their hidden
neurons differently in their chromosomes will still be
equivalent functionally. The permutation problem makes
the crossover operator very inefficient and ineffective in
producing good offspring. It is generally very difficult to
apply crossover operators in evolving connection weights
since they tend to destroy feature detectors found during
the evolutionary process, because hidden nodes are in
essence feature extractors and detectors.

2.2 The evolution of architectures

The architecture of an artificial neural network includes its
topological structure, i.e., connectivity, and the transfer
function of each neuron in the artificial neural network.
Architecture design is crucial in the successful application
of artificial neural networks because the architecture has
significant impact on a network’s information processing
capabilities. Up to now, architecture design is still very
much a human expert’s job. It depends heavily on the
expert experience and a tedious trial-and-error process.
There is no systematic way to design a near-optimal
architecture for a given task automatically.
Constructive / destructive algorithms are one of the many
efforts made towards the automatic design of artificial
neural network architecture. A constructive algorithm
starts with a minimal network (e.g. network with minimal
number of hidden layers, neurons, and connections) and
adds new layers, neurons, and connections when necessary
during training while a destructive algorithm does the
opposite, i. e., starts with the maximal network and deletes
unnecessary layers, neurons, and connections during
training. These methods are susceptible to becoming
trapped at local optima, and in addition, they only
investigate restricted topological subsets rather than the
complete class of network architectures. The design of the
optimal artificial neural network architecture can be
formulated as a search problem in the architecture space
where each point represents some architecture. The
performance level of all architectures forms a discrete
surface in the space. The optimal architecture design is
equivalent to finding the highest point on this surface.
There are several characteristics of such a surface, which
make the evolutionary algorithms a better candidate for
searching the surface than the constructive and destructive
algorithms. These characteristics are [5] the following:
 The surface is infinitely large since the number of

possible neurons and connections is unbounded.
 The surface is no differentiable since changes in the

number of neurons or connections are discrete and
can have a discontinuous effect on artificial neural
network’s performance.

 The surface is complex and noisy since the mapping
from an architecture to its performance is indirect
and dependent on the evaluation method used.

 The surface is deceptive since similar architectures
may have quite different performance.

 The surface is multimodal since different
architectures may have similar performance.

 Fig. 1 Process of evolutionary design of artificial neural
networks.

Similar to the evolution of connection weights, two major
phases involved in the evolution of architectures are the
genotype representation scheme of architectures and the
evolutionary algorithm used to evolve artificial neural
network architectures. But the problem now is not whether
to use a binary representation or a real one, since we only
deal with discrete values, a binary representation is
required. A key issue here is to decide how much
information about architecture should be encoded into a
representation. As we apply discrete values, we use
usually a binary representation, i.e. matrices or graphs.
The evolution of neural network architecture is shown in
figure 1. The stochastic optimization algorithms are in
principle the only systematic approach to optimization of
neural network architecture. Continuous research on
evolving neural network architecture has been carried out
in the recent years, e.g. [6, 7].

Two different approaches have been taken in the direct
encoding scheme. In the direct encoding scheme, each
connection between neurons is directly specified by its
binary representation. It is very suitable for the precise and
deterministic search of compact artificial neural network
architecture, since a single connection can be added or
removed from the artificial neural network easily. One
potential problem of the direct encoding scheme is
scalability. A large artificial neural network would require
a very large matrix and thus increase in the computation

GENOTYPE PHENOTYPE

Decoding

Fitness Evaluation Label

offspring

selection

recombination

ANN training

evolutionary component

learning component

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 4, March 2010
www.IJCSI.org

34

time of evolution. In [8] is shown that the length of the
genotype is proportional to the complexity of the
corresponding phenotype, and the space to be searched by
the evolutionary process increases exponentially with the
size of the network. Another problem of direct encoding
schemes is the impossibility to encode repeated structures
(such as network composed of several sub-networks with
similar local connectivity) in a compact way. In one-to-
one mappings, in fact, elements that are repeated at the
level of the phenotype must be repeated at the level of the
genotype as well. The next problem to be considered in
binary representation is that of variable-length genomes.
For example, where two parents have different topologies,
it is not obvious how their offspring should be formed.
When determining which nodes and connections the
offspring should inherit, it would be helpful to know
which subnetworks from the parents perform the same
functions, and which represent disjoint concepts.
Unfortunately, this information is not readily apparent
from the two different topologies. Handling a binary
representation we strive to take advantages from
combining different solutions, while we draw attention to
the confrontation between the flexibility of representations
and compatibility of genotypes.

In order to reduce the length of the genotype
representation of architectures, we can use the indirect
encoding scheme, where only the most important
characteristics of architecture are encoded in the
chromosome. The details about each connection in an
artificial neural network is either predefined according to
prior knowledge or specified by a set of deterministic
developmental rules. Many of the indirect neural networks
encoding strategies are inspired by the Lindenmayer
systems. The typical approach of such encoding is a
grammatical encoding [8], where evolutionary algorithms
do not develop network architecture directly, but rules of
formal grammatics, being subsequently used for
generating the network topology. The shift from the direct
optimization of architectures to the optimization of
developmental rules has brought some benefits, such as
more compact genotype representation. The rules do not
grow with the size of artificial neural networks, since the
rule size does not change. The rule is usually described by
a recursive equation or a generation rule is similar to a
production rule in a production system with a left-hand
side and a right-hand side. In [9], a genetic encoding
scheme for neural networks based on a cellular duplication
and differentiation process was proposed. Genomes are
programs written in a specialized graph transformation
language called the grammar tree, which is very compact.
The genotype-to-phenotype mapping starts with a single
cell that undergoes a number of duplication and
transformation processes ending up in a complete neural

network. In this scheme the genotype is a collection of
rules governing the process of cell divisions (a single cell
is replaced by two "daughter" cells) and transformations
(new connections can be added and the strengths of the
connections departing from a cell can be modified). In this
model, therefore, connection links are established during
the cellular duplication process. This mechanism allows
the genotype-to-phenotype process to produce repeated
phenotype structures (e.g. repeated neural sub-networks)
by reusing the same genetic information, which saves
space in genome and it is useful even for keeping the
substructures when applying the crossover operator. The
literature [10] introduces a new algorithm based on Gene
Expression Programming that performs a total network
induction using linear chromosomes of fixed length that
map into complex neural networks of different sizes and
shapes. The total induction of neural networks using gene
expression programming requires further modification of
the structural organization developed to manipulate
numerical constants and domain-specific operators. The
indirect encoding scheme is biologically more plausible as
well as more practical, from the view point of engineering,
than the direct encoding scheme although some fine-
tuning algorithms might be necessary to further improve
the result of evolution. Other techniques of indirect neural
network encoding topology are listened in numerous
publications, e.g. [11, 12, 13].

The representation of artificial neural network
architectures always plays an important role in the
evolutionary design of architectures. There is not a single
method, which outperforms others in all aspects. The best
choice depends heavily on applications at hand and
available prior knowledge. A problem closely related to
the representation issue is the design of genetic operators.
However, the use of crossover appears to be inconsistent,
because crossover works the best when building blocks
exist but it is unclear what a building block might be in an
artificial neural network since the artificial neural
networks are featured with a distributed (knowledge)
representation. The knowledge in an artificial neural
network is distributed among all the weights in the
artificial neural network. Recombining one part of an
artificial neural network with another part of another
artificial neural network is likely to destroy both artificial
neural networks. However, if artificial neural networks do
not use a distributed representation but rather a localized
one, such as radial basis function networks or nearest-
neighbor multilayer perceptrons, crossover might be a
very useful operator [14]. In general, artificial neural
networks using distributed representation are more
compact and have a better generalization capability for
most practical problems. As for the evolution of
connection weights, thus even here we have to resolve the

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 4, March 2010
www.IJCSI.org

35

permutation problem that causes enormous redundancy in
the architecture space. Unfortunately, no satisfying
technique has been implemented to tackle this problem.
An advantage of the evolutionary approach is that the
fitness function can be defined easily in such a way that an
artificial neural network with some special features is
evolved. For example, artificial neural networks with a
better generalization can be obtained if testing results,
instead of training results, are used in their fitness
calculations. A penalty term in the fitness function for
complex connectivity can also help improve artificial
neural network’s generalization ability, besides the cost
benefit, by reducing the number of neurons and
connections in artificial neural networks.

The discussion on the evolution of architectures so far
only deals with the topological structure of architecture.
The transfer function of each neuron in the architecture
has been assumed to be fixed and predefined by human
experts yet. The transfer function has been shown to be an
important part of artificial neural network architecture and
have significant impact on artificial neural network’s
performance. In principle, transfer functions of different
neurons in an artificial neural network can be different and
decided automatically by an evolutionary process, instead
of assigned by human experts. The decision on how to
encode transfer functions in chromosome depends on how
much prior knowledge and computation time is available.
In general, neurons within a group, like a layer, in an
artificial neural network tend to have the same type of
transfer function with possible difference in some
parameters, while different groups of neurons might have
different types of transfer functions. This suggests some
kind of indirect encoding method, which lets
developmental rules to specify function parameters if the
function type can be obtained through evolution, so that
more compact chromosomal encoding and faster evolution
can be achieved.

2.3 Simultaneous evolution of architectures and
connection weights

The evolutionary approaches discussed so far in designing
artificial neural network architecture evolve architectures
only, without any connection weights. Connection weights
have to be learned after a near-optimal architecture is
found. This is especially true if one uses the indirect
encoding scheme of network architecture. One major
problem with the evolution of architectures without
connection weights is noisy fitness evaluation [15, 16]. In
other words, fitness evaluation is very inaccurate and
noisy because a phenotype’s (i.e., an artificial neural
network with a full set of weights) fitness was used to
approximate its genotype’s (i.e., an artificial neural

network without any weight information) fitness. There
are two major sources of noise [15]:
 The first source is the random initialization of the

weights. Different random initial weights may
produce different training results. Hence, the same
genotype may have quite different fitness due to
different random initial weights used in training.

 The second source is the training algorithm.
Different training algorithms may produce different
training results even from the same set of initial
weights. This is especially true for multimodal error
functions.

In order to reduce such noise, architecture usually has to
be trained many times from different random initial
weights. The average result is then used to estimate the
genotype’s mean fitness. This method increases the
computation time for fitness evaluation dramatically. It is
one of the major reasons why only small artificial neural
networks were evolved in this way. In essence, the noise is
caused by the one-to-many mapping from genotypes to
phenotypes. It is clear that the evolution of architectures
without any weight information has difficulties in
evaluating fitness accurately. One way to alleviate this
problem is to evolve artificial neural network architectures
and connection weights simultaneously [17]. In this case,
each individual in a population is a fully specified
artificial neural network with complete weight
information. Since there is a one-to-one mapping between
a genotype and its phenotype, fitness evaluation is
accurate.

2.4 The evolution of learning rules

An artificial neural network training algorithm may have
different performance when applied to different
architectures. The design of training algorithms, more
fundamentally the learning rules used to adjust connection
weights, depends on the type of architectures and learning
tasks under investigation. After selecting a training
algorithm, there are still algorithm parameters, like the
learning rate and momentum in backpropagation
algorithms, which have to be specified. For example
genetic algorithms are suitable for training artificial neural
networks with feedback connections and deep feedforward
artificial neural networks (with many hidden layers) while
backpropagation is good at training shallow ones. At
present, this kind of search for an optimal (near optimal)
learning rule can only be done by some experts through
their experience and trial-and-error. In fact, what is needed
from an artificial neural network is its ability to adjust its
learning rule adaptively according to its architecture and
the task to be performed. Since evolution is one of the
most fundamental forms of adaptation, then said evolution

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 4, March 2010
www.IJCSI.org

36

may contribute to the development of appropriate type of
the learning rule for given application; for which also the
fact may be utilized that the relationship between
evolution and learning is extremely complex. Various
models have been proposed, but most of them deal with
the issue of how learning can guide evolution and the
relationship between the evolution of architectures and
that of connection weights. Research into the evolution of
learning rules is still in its early stages, see e.g. [18, 19].
This research is important not only in providing an
automatic way of optimizing learning rules and in
modeling the relationship between learning and evolution,
but also in modeling the creative process since newly
evolved learning rules can deal with a complex and
dynamic environment.

The adaptive adjustment of algorithmic parameters
through evolution could be considered as the first attempt
of the evolution of learning rules, e.g. in [20] encoded
backpropagation’s parameters in chromosomes together
with the artificial neural network architecture. The
evolution of algorithmic parameters is certainly interesting
but it hardly touches the fundamental part of a training
algorithm, i.e., its learning rule or weight-updating rule.

Adapting a learning rule through evolution is expected to
enhance the artificial neural network’s adaptivity greatly
in a dynamic environment. It is much more difficult to
encode dynamic behaviours, like the learning rule, than to
encode properties, like the architecture and connection
weights, of an artificial neural network. The key issue here
is how to encode the dynamic behavior of a learning rule
into static chromosomes. Trying to develop a universal
representation scheme, which can specify any kind of
dynamic behaviors, is clearly impractical, let alone the
prohibitive long computation time required searching such
a learning rule space. Constraints have to be set on the
type of dynamic behaviors, i.e., the basic form of learning
rules being evolved in order to reduce the representation
complexity and the search space. Two basic assumptions
which have often been made on learning rules are [21]: a)
weight updating depends only on local information such
as the activation of the input neuron, the activation of the
output neuron, the current connection weight, etc., and b)
the learning rule is the same for all connections in an
artificial neural network. A learning rule is assumed to be
a linear function of these local variables and their
products. That is, a learning rule can be described by the
function (3):

n

k

n

iii

k

j
iiii

k

j
txtw

1 1,...,, 1
,...,,

21

21
1 (3)

where t is time, w is the weight change, x1,x2,...,xn are
local variables, and the ’s are real-valued coefficients,
which will be determined by evolution. In other words, the
evolution of learning rules in this case is equivalent to the
evolution of real-valued vectors of ’s. The major aim of
the evolution of learning rules is to decide these
coefficients. Different ’s determine different learning
rules. Due to a large number of possible terms in (3),
which would make evolution very slow and impractical,
only a few terms have been used in practice according to
some biological or heuristic knowledge [22]. Research
related to the evolution of learning rules is also included in
[23, 24], although they did not evolve learning rules
explicitly. Researchers emphasized the crucial role of the
environment in which the evolution occurred.

3. Conclusions

Optimization within informatics means to seek the answer
to the question “which solution would be the best” for a
problem, in which the quality of each answer may be
evaluated via a single value. Although we commonly use
the word “optimum”; in practice we should obtain the
exact global optimum within a huge complex space, which
may be considered here with troubles only. Generally,
solving the practical tasks, we need sufficient enough
approximated (suboptimum) resolution however, above
mentioned need not be implicitly a global optimum.
Criterion “sufficient enough” differs for various types of
solved problems. Evolution course usually endeavors to
find out a certain task suboptimum solution, instead of
exact one.

Optimization within artificial neural networks means to
seek the optimal combinations of architecture, learning
rule and connection weights. Global search procedures
such as evolutionary algorithms are usually
computationally expensive. It would be better not to
employ evolutionary algorithms at all three levels of
evolution. It is, however, beneficial to introduce global
search at some levels of evolution, especially when there
is little prior knowledge available at that level and the
performance of the artificial neural network is required to
be high, because the trial-and-error and other heuristic
methods are very ineffective in such circumstances. Due to
different time scales of different levels of evolution, it is
generally agreed that global search procedures are more
suitable for the evolution of architectures and that of
learning rules on slow time scales, which tends to explore
the search space in coarse grain (locating optimal regions),
while local search procedures are more suitable for the
evolution of connection weights on the fast time scale,
which tends to exploit the optimal region in fine grain

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 4, March 2010
www.IJCSI.org

 3

37

(finding an optimal solution). Such designed artificial
neural networks have been shown to be quite competitive
in terms of the quality of solutions found and the
computational cost. With the increasing power of parallel
computers, the evolution of large artificial neural networks
becomes feasible. Not only can such evolution discover
possible new artificial neural network architectures and
learning rules, but it also offers a way to model the
creative process as a result of artificial neural network’s
adaptation to a dynamic environment.

References
[1 L. V. Fausett, Fundamentals of Neural Networks. Prentice-

Hall, Inc., Englewood Cliffs, New Jersey 1994.
[2] A.Molfetas, G.Bryan, „Structured genetic algorithm

representations for neural network evolution“. In
Proceedings of the 25th IASTED International Multi –
Conference Artificial intelligence and applications, Austria
2007, pp. 486-491.

[3] R.Xu, D. Wunsch, “Survey of Clustering Algorithms”, IEEE
Transactions on Neural Networks, Vol. 16(3) 2005, pp. 645-
678.

[4] K. O. Stanley, “Comparing Artificial Phenotypes with
Natural Biological Patterns”. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO)
Workshop Program. New York, NY: ACM Press, 2006.

[5] G. F. Miller, P. M. Todd, and S. U. Hedge, “Design neural
networks using genetic algorithms”. In Schaffer, J. D. (ed.)
Proceedings of the Third International Conference on
Genetic Algorithms, Morgan Kaufmann, San Mateo, CA
1989, pp. 379-384.

[6] P. G. Benardos, and G. Vosniakos, “Optimizing feedforward
artificial neural network architecture”. Eng. Appl. Artif.
Intell. Vol. 20 (3) 2007, pp.365-382.

[7] M. H. Luerssen, “Graph grammar encoding and evolution of
automata networks”. In V. Estivill-Castro, (ed.) Proceedings
of the Twenty-Eighth Australasian Conference on Computer
Science - Volume 38, Darlinghurst, Australia 2005, pp.229-
238,.

[8] H. Kitano, “Designing neural networks using genetic
algorithms with graph generation system”, Complex
Systems, 4, 1990, pp. 461-476.

[9] F.Gruau, D. Whitley, and L.Pyeatt, “A comparison between
cellular encoding and direct encoding for genetic neural
networks”. In Koza, J. R. Goldberg, D. E. Fogel, D. B., and
Riolo, R. L. (eds.) Genetic Programming 1996: Proceedings
of the First Annual Conference, Cambridge, MA, MIT Press,
1996, pp. 81-89.

[10] Ferreira, C. “Gene expression programming: A new
adaptive algorithm for solving problems”. Complex Systems,
13 (2): 87-129, 2001.

[11] R. Miikkulainen, “Evolving neural networks”. In
Proceedings of the 2007 GECCO Conference Companion on
Genetic and Evolutionary Computation GECCO '07. ACM,
New York, NY, 2007, pp. 3415-3434.

[12] S. Nolfi, D. Parisi, „Evolution of artificial neural networks”.
In M. A.Arbib (Ed.), Handbook of brain theory and neural
networks, Second Edition. Cambridge, MA: MIT Press,
2002, pp. 418-421.

[13] K.O. Stanley, and R.Miikkulainen, “Evolving adaptive
neural networks with and without adaptive synapses”. In
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2002) Workshop Program. San
Francisco, CA: Morgan Kaufmann, 2002.

[14] J. Zhang, H. S. Chung, and J. Zhong, “Adaptive crossover
and mutation in genetic algorithms based on clustering
technique”. In H. Beyer, (ed.) Proceedings of the 2005
Conference on Genetic and Evolutionary Computation
GECCO '05. ACM, New York, NY,2005, pp.1577-1578.

[15] X. Yao, G.Lin, and Y. Liu, “A new evolutionary system for
evolving artificial neural networks”. IEEE Trans. Neural
Networks, vol. 8, 1997, pp. 694–713.

[16] X. Yao, “Evolving artificial neural networks”. In
Proceedings of the IEEE 89 (9) 1999, pp.1423-1447,.

[17] P. A. Castillo, J. J. Merelo, M. G. Arenas, and G. Romero,
“Comparing evolutionary hybrid systems for design and
optimization of multilayer perceptron structure along training
parameters”, Information Sciences, Vol 177 (14) 2007,
pp.2884-2905.

[18] B. Liu, H. A. Abbass, and B. McKay, “Classification rule
discovery with ant colony optimization” In the IEEE/WIC
International Conference on Intelligent Agent Technology
IAT 2003, Halifax, Canada, 2003.

[19] K. Shafi, H. Abbass, and W. Zhu “Real time signature
extraction during adaptive rule discovery using UCS”, In
IEEE Congress on Evolutionary Computation (CEC),
Singapore, 2007.

[20] R. A. Jacobs, “Increased rates of convergence through
learning rate adaptation”. Neural Networks, vol. 1, no. 3,
1988, pp. 295–307.

[21] X. Yao, “Evolutionary artificial neural networks.” In Kent,
A., and Williams, J. G. (eds.) Encyclopedia of Computer
Science and Technology, vol. 33, New York: Marcel Dekker,
1995, pp. 137–170.

[22] D. J. Chalmers, “The evolution of learning: An experiment
in genetic connections”. In Touretzky, D.S., Eltman, J.L.,
Sejnowski, T.J., and Hinton, G.E. (eds.) Proceedings of the
1990 Connectionist Model Summer School. Morgan
Kaufmann, San Mateo, CA 1990.

[23] S. Nolfi, J. L. Elman, and D. Parisi, Learning and evolution
in neural networks. Center Res. Language, Univ. California,
San Diego, July Tech. Rep. CRT-9019, 1990.

[24] Parisi, F. Cecconi, and S. Nolfi, “Econets: neural networks
that learn in an environment”. Network, 1, 1990, pp. 119-
168.

Eva Volna She graduated at the Slovak Technical University in
Bratislava and defended PhD. thesis with title “Modular Neural
Networks”. She has been working as a lecturer at the Department
of Computer Science, University of Ostrava (Czech Republic) from
1992. Her interests include artificial intelligence, artificial neural
networks, evolutionary algorithms, and cognitive science. She is
author more than 50 scientific publications.

