
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 2, March 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

30

Optimized Fuzzy Logic Based Framework for

Effort Estimation in Software Development

Vishal Sharma1 and Harsh Kumar Verma2

1 Department of Computer Science and Information Technology
 DAV College, Jalandhar, Punjab, India

2 Department of Computer Science and Engineering
 Dr B R Ambedkar National Institute of Technology

 Jalandhar, Punjab, India

Abstract
Software effort estimation at early stages of project development
holds great significance for the industry to meet the competitive
demands of today’s world. Accuracy, reliability and precision in
the estimates of effort are quite desirable. The inherent
imprecision present in the inputs of the algorithmic models like
Constructive Cost Model (COCOMO) yields imprecision in the
output, resulting in erroneous effort estimation. Fuzzy logic
based cost estimation models are inherently suitable to address
the vagueness and imprecision in the inputs, to make reliable and
accurate estimates of effort. In this paper, we present an
optimized fuzzy logic based framework for software
development effort prediction. The said framework tolerates
imprecision, incorporates experts knowledge, explains prediction
rationale through rules, offers transparency in the prediction
system, and could adapt to changing environments with the
availability of new data. The traditional cost estimation model
COCOMO is extended in the proposed study by incorporating
the concept of fuzziness into the measurements of size, mode of
development for projects and the cost drivers contributing to the
overall development effort.
Keywords: Fuzzy Logic; Effort Estimation; Soft Computing;
COCOMO.

1. Introduction

Software cost estimation is a vital aspect that guides and
supports the planning of software projects. Controlling the
expenses of software development effectively is of
significant importance in today’s competitive world [1, 2].
The need for reliable and accurate software development
cost predictions in software engineering is a challenging
perspective accounting for considerable financial and
strategic planning [3]. Software cost estimation guides the
prediction of the likely amount of effort, time, and staffing
levels required to build a software system at an early stage
during a project. However, estimates at the preliminary
stages of the project are the most difficult to obtain

because the primary source to estimate the costing comes
from the requirement specification documents [4]. The
accuracy of the estimates is quite low at the starting stages
of the project because of the limited details available. Age
old approaches for software projects effort prediction such
as the use of mathematical formulae derived from
historical data, or the use of expert’s judgments, lack in
terms of effectiveness and robustness in their results.
These issues are even more critical when these effort
prediction approaches are used during the early phases of
the software development lifecycle (for instance, effort
predictors along with their relationships to effort are
characterized as being more imprecise and uncertain at
requirements development phase, than those of later
development phases, like design).

2. Effort Estimation Models

Software effort estimation stands as the oldest and most
mature aspect of software metrics towards rigorous
software measurement. Considerable research had been
carried out in the past, to come up with a variety of effort
prediction models. This section discusses the evolution of
both algorithmic and non-algorithmic estimation
techniques overtime.

2.1 Algorithmic Models

Algorithmic models predict effort relying upon the
accurate estimate of either size of software in terms of
lines of code (LOC), number of user screens, interfaces,
complexity, etc. at a time when uncertainty is mostly
present in the project [5]. Boehm was the first researcher
to consider software engineering economically. He came
up with a cost estimation model, COCOMO-81 in 1981,
after investigating a large set of data from TRW in the

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 2, March 2010
www.IJCSI.org

31

1970s assuming that the effort grows more than linearly
on software size [6]. Putnam also developed an early
model known as SLIM in 1978[7]. Both these models
make use of data from past projects and are based on
linear regression techniques, take number of lines of code
(about which least is known very early in the project) as
the major input to their models. A survey on these
algorithmic models and other cost estimation approaches
is presented by Boehm et. al.[8]. Algorithmic models such
as COCOMO are unable to present suitable solutions that
take into consideration technological advancements [3].
This is because, these models are often unable to capture
the complex set of relationships (e.g. the effect of each
variable in a model to the overall prediction made using
the model) that are evident in many software development
environments [9].They can be successful within a
particular type of environment, but not flexible enough to
adapt to a new environment. They cannot handle
categorical data (specified by a range of values) and most
importantly lack of reasoning capabilities. These
limitations have paved way for the number of studies
exploring non-algorithmic methods (e.g. Fuzzy
Logic)[10].

2.2 Soft Computing Based Models

Newer computation techniques, to cost estimation that are
non-algorithmic i.e. approaches that are soft computing
based came up in the 1990s, and turned the attention of
researchers towards them. This section discusses some of
the non-algorithmic models for software development
effort estimation. Soft computing encompasses
methodologies centering in fuzzy logic (FL), artificial
neural networks (ANN) and evolutionary computation
(EC). These methodologies handle real life ambiguous
situations by providing flexible information processing
capabilities.

Soft computing techniques have been used by many
researchers for software development effort prediction to
handle the imprecision and uncertainty in data aptly, due
to their inherent nature. The first realization of the
fuzziness of several aspects of one of the best known [11],
most successful and widely used model for cost
estimation, COCOMO, was that of Fei and Liu [6]. They
observed that an accurate estimate of delivered source
instruction (KDSI) cannot be made before starting the
project; therefore, it is unreasonable to assign a
determinate number for it. Jack Ryder investigated the
application of fuzzy modeling techniques to two of the
most widely used models for effort prediction; COCOMO
and the Function-Points models, respectively [5]. Fuzzy
Logic was applied to the cost drivers of intermediate
COCOMO model (the most widely used version) as it has
relatively high estimation accuracy than the basic version

which is quite comparable to the detailed version [12]. The
study ignored the key project attribute “size” to estimate
the software development effort. The resulting model
lacked in one of the most desirable aspect of software
estimation models i.e. adaptability. Musilek et al. applied
fuzzy logic to represent the mode and size as input to
COCOMO model [13]. The study was not adaptive as it
lacked fuzzy rules which are definitely important to
augment the system with expert’s knowledge.

Ahmed et al. went a step further and fuzzified the two
parts of COCOMO model i.e., nominal effort estimation
and the adjustment factor. They proposed a fuzzy logic
framework for effort prediction by integrating the
fuzzified nominal effort and the fuzzified effort multipliers
of the intermediate COCOMO model [10]. Knowing the
likely size of a software product before it has been
constructed is potentially beneficial in project
management [14]. The results suggest that with refinement
using data and knowledge, fuzzy predictive models can
outperform their traditional regression-based counterparts.

Boetticher has described a neural network approach for
characterizing programming effort based on internal
product measures [15]. A study assessed the capabilities of
a neuro-fuzzy system in comparison to other estimation
techniques and models [3]. Neuro-fuzzy systems combine
the valuable learning and modeling aspects of neural
networks with the linguistic properties of fuzzy systems.
An accuracy of within 25% of actual effort more than 75%
of the time can be achieved for one large commercial data
set for a neural network based model when used to
estimate software development effort [16].

In summary, the previous research reveals that all of the
soft computing-based software effort prediction models
that exist, lack in some aspect or the other. There is still
much uncertainty as to what prediction technique suits
which type of prediction problem [17]. So, there is a
compelling demand to develop a single soft computing
based model which handles tolerance of imprecision in the
input at the preliminary phases of software engineering,
addresses the fuzzification of one of the key attribute i.e.
size of the project, incorporates expert’s knowledge in a
well-defined manner, allows total transparency in the
prediction system by prediction of results through rules or
other means, adaptability towards continually changing
development technologies and environments[18]. Properly
addressing all these issues would position soft computing-
based prediction techniques as models of choice for effort
prediction, considering the promising features already
present in them.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 2, March 2010
www.IJCSI.org

32

3. Optimized Fuzzy Logic Based Framework

This research developed an optimized fuzzy logic based
framework to handle the imprecision and uncertainty
present in the data at early stages of the project to predict
the effort more accurately. The said framework is built
upon an existing cost estimation model—COCOMO. The
choice is justified in a way that, while many traditional
models have been said to perform poorly when it comes to
cost estimation, COCOMO-81 is said to be the best known
[11], most plausible[13],and most cited [3] of all traditional
models. The COCOMO model is a set of three models:
basic, intermediate, and detailed [19]. This research used
intermediate COCOMO model because it has estimation
accuracy that is greater than the basic version, and at the
same time comparable to the detailed version [12].
COCOMO model takes the following as input: (1) the
estimated size of the software product in thousands of
Delivered Source Instructions (KDSI) adjusted for code
reuse; (2) the project development mode given as a
constant value B (also called the scaling factor) ; and (3) 15
cost drivers [19, 20]. The development mode depends on
one of the three categories of software development modes:
organic, semi-detached, and embedded. It takes only three
values, {1.05, 1.12, 1.20}, which reflect the difficulty of
the development. The estimate is adjusted by factors called
cost drivers that influence the effort to produce the software
product. Cost drivers have up to six levels of rating: Very
Low, Low, Nominal, High, Very High, and Extra High.
Each rating has a corresponding real number (effort
multiplier), based upon the factor and the degree to which
the factor can influence productivity. The estimated effort
in person-months (PM) for the intermediate COCOMO is
given as:

Effort = A × [KDSI] B × i=1∏
 15EMi (1)

The constant A in “(1)” is also known as productivity
coefficient. The scale factors are based solely on the
original set of project data or the different modes as given
in Table 1.

Table 1: COCOMO Mode Coefficients and Scale Factor Values

The contribution of effort multipliers corresponding to the
respective cost drivers is introduced in the effort
estimation formula by multiplying them together. The
numerical value of the ith cost driver is EMi and the
product of all the multipliers is called the estimated
adjustment factor (EAF).

The actual effort in person months (PM), PM total is the
product of the nominal effort (i.e. effort without the cost
drivers) and the EAF, as given in “(2)”.

PM total = PM nominal × EAF (2)

(where PM nominal = A × [KDSI] B and EAF = i=1∏
 15EMi)

The proposed framework addresses the limitations of
existing soft computing based techniques for effort
estimation by:

 Fuzzification of the two components of the COCOMO
model (the nominal effort part and cost driver part) that
capture imprecision in an organized manner.

 Incorporating expert’s knowledge by providing a
transparent and well defined approach by developing
an appropriate rule base that can be modified.

 Integrating the two components of the COCOMO
model viz. the nominal effort prediction component
and the effort adjustment component.

The framework will thus allow fuzzy and expert
knowledge incorporation into the system.

4. Research Methodology

Imprecision is present in all parameters of the COCOMO
model. The exact size of the software project to be
developed is difficult to estimate precisely at an early
stage of the development process. COCOMO does not
consider the software projects that do not exactly fall into
one of the three identified modes. In addition, the cost
drivers are categorical. Obviously, this limits the
correctness and precision of estimates made. There is a
need for a technology, which can overcome the associated
imprecision residing within the final results of cost
estimation. The technique endorsed here deals with fuzzy
sets. In all the input parameters, fuzzy sets can be
employed to handle the imprecision present.

In the course of research work the following steps were
undertaken:

4.1 Choice of membership functions

Appropriate membership function representing the size of
the project which is an input to the basic component
(estimating nominal effort) of the underlying model i.e.
COCOMO was identified. Gaussian membership functions
proved superior to the triangular membership functions
used in most of the previous researches for fuzzifying the
sizes of projects, to address the vagueness in the project
sizes. They are inherently adaptable, due to their
nonlinearity and also allow a smoother transition in the

Mode A B

Organic 3.2 1.05

Semidetached 3.0 1.12

Embedded 2.8 1.2

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 2, March 2010
www.IJCSI.org

33

intervals representing size as a linguistic variable as shown
in “Fig. 1”.

The same type of member ship functions are used for
representing software development mode, to accommodate
the projects falling between the identified modes as shown
in “Fig. 2”. In this way the framework can handle
changing development environments, by accommodating
projects that may belong partially to two categories of
modes (80% semi- detached and 20% embedded). The
resulting effort is also represented with Gaussian
membership functions shown in “Fig. 3”.

Fig. 1 Input variable “size” represented as Gaussian MF

Fig. 2 Input variable “mode” represented as Gaussian MF

Fig. 3 Output variable “effort” represented as hypothetical Gaussian MF

4.2 Development of the fuzzy rules for nominal effort
component

The basic component of the COCOMO model is used to
develop the fuzzy rules to estimate nominal effort,
independent of cost drivers thereby finding
correspondence between mode, size and resulting effort by
dividing input and output spaces into fuzzy regions [21,
22]. The parameters of the effort MFs were determined for
the given mode, size pair. 3 MFs representing effort were

obtained for a random size and 3 modes respectively.
Rules formulated, based on the fuzzy sets of modes, sizes
and efforts appear in the following form:

IF mode is organic and size is s1 THEN effort is e11
IF mode is semi-detached and size is s1 THEN effort is
e21
IF mode is embedded and size is s1 THEN effort is e31
IF mode is organic and size is s2 THEN effort is e12
IF mode is semi-detached and size is s2 THEN effort is
e22
IF mode is embedded and size is s2 THEN effort is e32
…..
IF mode is mj and size is si THEN effort is eji
(1 ≤ i ≤ n, 1 ≤ j ≤ 3)

where mj are the fuzzy values for the fuzzy variable
mode, si(1 ≤ i ≤ n) are the fuzzy values for the fuzzy
variable.

 4.3 Fuzzification of cost drivers

The cost drivers are fuzzified using triangular and
trapezoidal fuzzy sets for each linguistic value such as
very low, low, nominal, high etc. as applicable to each
cost driver. Separate independent FIS is used for every
cost driver. Rules are developed with cost driver in the
antecedent part and corresponding effort multiplier in the
consequent part. The defuzzified value for each of the
effort multiplier is obtained from individual FISs after
matching, inference aggregation and subsequent
defuzzification. Total EAF is obtained after multiplying
them together.

Sample fuzzification of main storage used (STOR) cost
driver based on Tables 2 and 3 is illustrated in “Fig. 4 and
5”.

Table 2: The STOR(Main Storage) Cost Driver Definition
in terms of percentage

Nominal High Very High Extra high

<=50% 70 85 95

Table 3: The STOR(Main Storage) Effort Multiplier
Range Definitions

Nominal High Very High Extra high

1.0 1.06 1.21 1.56

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 2, March 2010
www.IJCSI.org

34

Fig. 4 Antecedent MFs for the FIS of cost driver main storage

Fig. 5 Consequent MFs for the FIS of cost driver main storage

From “Figs. 4 and 5” rules of the following form are
obtained:
If stor is nom (nominal) Then Effort is unchanged
If stor is high Then Effort is inc (increased)
If stor is vhigh (very high) Then Effort is incsig (increased
significantly)
If stor is ehigh (extra high) Then Effort is incdra
(increased drastically)

4.4 Integration of components

Total software effort is obtained by multiplication of crisp
effort from the basic part and crisp EAF from the cost
driver part (the product of effort multipliers corresponding
to each of the 15 cost drivers).

In concluding the presentation of the framework, it is
worth noting that rules are developed for the nominal
effort part using COCOMO as the underlying model. The
rules formulated for the cost drivers’ are simply developed
into FISs based on the tables in [21]. However, the
membership functions definition and rules formulation are
open to experts’ knowledge, because our approach is
transparent.

5. Experiments and Results

The approach has been validated by performing diverse
experiments, on the proposed framework. COCOMO
nominal equation has been used to generate artificial
datasets randomly for developing the FIS for software
effort prediction. The prediction capabilities of the FIS
were tested using different numbers of fuzzy sets (3, 5,
and 7) for input variable, size with triangular member-ship
functions (TMFs) as well as Gaussian membership
functions (GMFs). The performance of the FIS improved
with the increased number of membership functions as
shown in Figs. 6 and 7. The performance of the FIS is best
when 7 MFs are used for size.

This is primarily due to a suitable rule base with respect to
the fuzzy partitions of size, initially. This suggests that the
number of fuzzy sets should be enough to cover the rules
of the rule base appropriately and there is no under fitting
or over fitting.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

Size (KDSI)

E
ff

or
t

(P
er

so
n

M
on

th
s)

T3MFs vs Size

T5MFs vs Size
T7MFs vs Size

Cocomo vs Size

Fig. 6 Nominal Effort of FIS with 3,5,7 TMFs and COCOMO

using COCOMO public dataset

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 2, March 2010
www.IJCSI.org

35

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

Size (KDSI)

E
ff

or
t

(P
er

so
n

M
on

th
s)

G3MFs vs Size

G5MFs vs Size
G7MFs vs Size

Cocomo vs Size

 Fig. 7 Nominal Effort of FIS with 3,5,7 GMFs and COCOMO
using COCOMO public dataset

The graph in Fig. 8 shows a comparison of nominal effort
predicted by FIS using 7 triangular and 7 gaussian
member-ship functions representing input variable, size
against the nominal effort predicted by COCOMO. The
experiments establish that gaussian membership functions
perform better than triangular membership functions in
terms of effort prediction.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

Size (KDSI)

E
ff

or
t

(P
er

so
n

M
on

th
s)

T7MFs vs Size

G7MFs vs Size
Cocomo vs Size

 Fig. 8 Comparison of Nominal Effort of FIS with 7 TMFs, 7GMFs

and COCOMO using COCOMO public dataset

A comparison is made for the mean magnitude of relative
error (MMRE) in the estimate of nominal and total effort
(adjusted with the effort multipliers) using 3, 5, and 7
membership functions for size against the prediction of
COCOMO as shown in “Figs. 9 and 10”.

Fig. 9 MMRE in Nominal Effort predicted by FIS
using 3, 5 and 7 TMFs and GMFs

Fig. 10 MMRE in Total Effort predicted by FIS
using 3, 5 and 7 TMFs and GMFs

The values of MMRE in nominal effort predicted is 39.6
using COCOMO model, 73.14, 46.25, and 45.89 using
FIS with GMFs and 62.23, 51.73 and 48.92 using FIS with
TMFs. The values of MMRE in total effort predicted is
38.83 using COCOMO model, 64.26, 41.06, and 38.38
using FIS with GMFs and 60, 46.17 and 41.4 using FIS
with TMFs.

A quantitative measure of prediction quality is used to
compare the prediction accuracy of our research approach
to the actual values. The prediction quality of the FISs
using 3, 5, and 7 member-ship functions is compared in
terms of prediction accuracy both for nominal and total
efforts. The quantity used in the experiments is prediction
at level x – PRED(x). Suppose there is a set of n projects,
let y be the number of them, whose mean magnitude of
relative error is less than or equal to x, then:

PRED (x) = y/n (3)

An acceptable level for mean magnitude of relative error is
something less than or equal to 0.25. The prediction
accuracy of FISs in terms of predicted nominal effort and
total using 3, 5, and 7 TMFs and GMFs for size is shown
in Table 4. The results suggest that GMFs outperform
TMFs in terms of effort prediction within 25% of the
actual effort, when used to represent size and mode.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 2, March 2010
www.IJCSI.org

36

Table 4: Readings of PRED (25) of FIS

Number
of MFs

Prediction Accuracy
PRED(25) using

Triangular MFs for
Effort

Prediction Accuracy
PRED(25) using

Gaussian MFs for
Effort

Nominal Total Nominal Total

3 16.92 15.38 15.38 18.46

5 20 33.84 32.3 41.54

7 33.84 41.54 35.38 43.07

The validation experiments are carried out on the FIS
using COCOMO public dataset. The validation was
performed using a subset of the real life projects whose
size fall in the range 1-100 KDSI. This is justified because
the original FIS was developed over the same range of size
using artificial datasets generated using nominal effort
component of COCOMO.

The comparison of nominal effort prediction by FIS and
intermediate COCOMO model is made on actual real
project data and is shown graphically in “Fig. 11”.This
validation is of extreme importance because it measures
the prediction quality of the proposed framework against
the actual real life data of software development projects.

Another validation experiment compares the
comprehensive effort predicted by FIS and intermediate
COCOMO model with the incorporation of effort
multipliers as given in the actual real project data. It is
shown graphically “Fig. 12”.

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Size (KDSI)

E
ff

or
t

(P
er

so
n

M
on

th
s)

Cocomo vs Size

FIS vs Size
Actual vs Size

Fig. 11 Nominal Effort predicted by FIS, COCOMO and Actual
effort using COCOMO public dataset

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Size (KDSI)

E
ff

or
t

(P
er

so
n

M
on

th
s)

Cocomo vs Size

FIS vs Size
Actual vs Size

Fig. 12 Total Effort predicted by FIS, COCOMO and Actual

effort using COCOMO public dataset

A comparison is made between the quality of prediction
results by plotting the percentage error in nominal effort
predicted by the FIS and nominal effort estimated by the
COCOMO model against the sizes of the projects as given
in the COCOMO database. This is represented graphically
by “Fig. 13”. The results indicate that the percentage
errors in the nominal effort predicted by the FIS are less
than 50% for most of the projects except a few.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

Size (KDSI)

P
er

ce
nt

ag
e

E
rr

or

Cocomo vs Size

FIS vs Size

Fig. 13 Percentage Error in nominal effort predicted by
FIS and COCOMO using COCOMO public dataset

Another comparison between the comprehensive efforts
taking into account the cost drivers as well in terms of

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 2, March 2010
www.IJCSI.org

37

percentage errors in both the proposed FIS and COCOMO
model is shown in “Fig. 14”. The errors fall in the range of
0-50% for most of the projects and even better the
prediction of age old COCOMO model except for one
project as indicated in the graph. This may be attributed to
the fact that the FIS has been developed using COCOMO
as the underlying model.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

Size (KDSI)

P
er

ce
nt

ag
e

E
rr

or

Cocomo vs Size

FIS vs Size

Fig. 14 Percentage Error in total effort predicted by FIS
and COCOMO using COCOMO public dataset

6. Conclusions and Future Scope

The research presents a transparent, optimized fuzzy logic
based framework for software development effort
prediction. The Gaussian MFs used in the framework have
shown good results by handling the imprecision in inputs
quite well and also their ability to adapt further make them
a valid choice to represent fuzzy sets. The framework is
adaptable to the changing environments and handles the
inherent imprecision and uncertainties present in the
inputs quite well. The framework is augmented by the
contribution of the experts in terms of modifiable fuzzy
sets and rule base in accordance with the environments.
The performance of the framework is demonstrated in
terms of empirical validation carried on live project data of
the COCOMO public database. However, a little more
insight into the training strategies and availability of more
real life data suggest a room for improvement in the
prediction results.

This research indicates directions for further research.
Some of the identified future motivations of research are
as follows:

1) The proposed framework can be analyzed in terms of
feasibility and acceptance in the industry.

2) The framework can be deployed on COCOMO II
environment with experts providing required
information for developing fuzzy sets and an
appropriate rule base.

3) With a little more knowledge in fuzzy logic,
customized MFs can be developed to represent inputs
more closely to tolerate imprecision and uncertainty in
inputs so that the same is not propagated to the
outputs.

4) Novice training strategies can be incorporated to
normalize the error measure..

References

[1] S.G MacDonell, and A.R Gray, “A comparison of modeling
techniques for software development effort prediction”, in:
Proceedings of the International Conference on Neural Information
Processing and Intelligent Information Systems, Dunedin, New
Zealand, Springer, Berlin, 1997, pp. 869–872.

[2] K. Strike, K. El-Emam, and N. Madhavji, “Software cost estimation
with incomplete data”, IEEE Transactions on Software Engineering,
27(10) 2001.

[3] A. C. Hodgkinson, and P. W. Garratt, “A neurofuzzy cost
estimator”, in: Proceedings of the Third International Conference on
Software Engineering and Applications—SAE 1999, pp. 401–406.

[4] C. Kirsopp, M. J. Shepperd, and J. Hart, “Search heuristics, case-
based reasoning and software project effort prediction", Genetic and
Evolutionary Computation Conference (GECCO), New York,
AAAI, 2002.

[5] J. Ryder, “Fuzzy modeling of software effort prediction”,
Proceedings of IEEE Information Technology Conference,
Syracuse, NY, 1998.

[6] Z. Fei, and X. Liu, “f-COCOMO: fuzzy constructive cost model in
software engineering”, Proceedings of the IEEE International
Conference on Fuzzy Systems, IEEE Press, New York, 1992 pp.
331–337.

[7] K. Srinivasan, and D. Fisher, “Machine learning approaches to
estimating software development effort”, IEEE Transactions on
Software Engineering, 21(2) 1995.

[8] B. Boehm, C. Abts, and S. Chulani, “Software development cost
estimation approaches—a survey”, Technical Reports, USC-CSE-
2000-505, University of Southern California Center for Software
Engineering, 2000.

[9] C. Schofield, “Non-algorithmic effort estimation techniques”,
Technical Reports, Department of Computing, Bournemouth
University, England, TR98-01, March 1998.

[10] M. A. Ahmed, M. O. Saliu, and J. AlGhamdi, “Adaptive fuzzy
logic-based framework for software development effort prediction”,
Information and Software Technology Journal, 47 2005, pp. 31-48.

[11] C. Kirsopp, and M. J. Shepperd, “Making inferences with small
numbers of training sets”, Sixth International Conference on
Empirical Assessment & Evaluation in Software Engineering, Keele
University, Staffordshire, UK, 2002.

[12] A. Idri, and A. Abran, “COCOMO cost model using fuzzy logic”,
Seventh International Conference on Fuzzy Theory and
Technology, Atlantic City, NJ, 2000.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 2, March 2010
www.IJCSI.org

38

[13] P. Musilek, W. Pedrycz, G. Succi, and M. Reformat, “ Software cost
estimation with fuzzy models”, Applied Computing Review, 8(2)
2000 24–29.

[14] S. G. MacDonell, “Software source code sizing using fuzzy logic
modeling”, Information and Software Technology, 45 2003 pp.389–
404.

[15] G. D. Boetticher, “An assessment of metric contribution in the
construction of a neural network-based effort estimator”,
Proceedings of Second International Workshop on Soft Computing
Applied to Software Engineering, 2001.

[16] G. Wittig, and G. Finnie, “Estimating software development effort
with connectionist models”, Information and Software Technology,
39 1997, pp. 469–476.

[17] M. Shepperd, and G. Kadoda, “Comparing software prediction
techniques using simulation”, IEEE Transactions on Software
Engineering, 27(11) 2001, pp. 1014–1022.

[18] M. A. Ahmed, and M. O. Saliu, “Soft computing based effort
prediction systems—A survey”, in: E. Damiani, L.C. Jain (Eds.),
Computational Intelligence in Software Engineering, Springer-
Verlag, July 2004.

[19] B. Boehm, “Software Engineering Economics”, Prentice-Hall,
Englewood Cliffs, NJ, 1981.

[20] B. K. Clark, “The Effects of Software Process Maturity on Software
Development Effort”, PhD Dissertation, Faculty of Graduate
School, University of Southern California, 1997.

[21] L. –X. Wang, and J. M. Mendel, “Generating fuzzy rules by
learning from examples”, IEEE Transactions on System, Man, and
Cybernetics, 22(6) 1992.

[22] W. Pedrycz, H. F. Peters, and S. Ramanna, “A fuzzy set approach
to cost estimation of software projects”, Proceedings of IEEE
Canadian Conference on Electrical and Computer Engineering,
Alberta, Canada, 1999.

