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Abstract 
Software effort estimation at early stages of project development 
holds great significance for the industry to meet the competitive 
demands of today’s world. Accuracy, reliability and precision in 
the estimates of effort are quite desirable. The inherent 
imprecision present in the inputs of the algorithmic models like 
Constructive Cost Model (COCOMO) yields imprecision in the 
output, resulting in erroneous effort estimation. Fuzzy logic 
based cost estimation models are inherently suitable to address 
the vagueness and imprecision in the inputs, to make reliable and 
accurate estimates of effort. In this paper, we present an 
optimized fuzzy logic based framework for software 
development effort prediction. The said framework tolerates 
imprecision, incorporates experts knowledge, explains prediction 
rationale through rules, offers transparency in the prediction 
system, and could adapt to changing environments with the 
availability of new data. The traditional cost estimation model 
COCOMO is extended in the proposed study by incorporating 
the concept of fuzziness into the measurements of size, mode of 
development for projects and the cost drivers contributing to the 
overall development effort. 
Keywords: Fuzzy Logic; Effort Estimation; Soft Computing; 
COCOMO. 

1. Introduction 

Software cost estimation is a vital aspect that guides and 
supports the planning of software projects. Controlling the 
expenses of software development effectively is of 
significant importance in today’s competitive world [1, 2]. 
The need for reliable and accurate software development 
cost predictions in software engineering is a challenging 
perspective accounting for considerable financial and 
strategic planning [3]. Software cost estimation guides the 
prediction of the likely amount of effort, time, and staffing 
levels required to build a software system at an early stage 
during a project. However, estimates at the preliminary 
stages of the project are the most difficult to obtain 

because the primary source to estimate the costing comes 
from the requirement specification documents [4]. The 
accuracy of the estimates is quite low at the starting stages 
of the project because of the limited details available. Age 
old approaches for software projects effort prediction such 
as the use of mathematical formulae derived from 
historical data, or the use of expert’s judgments, lack in 
terms of effectiveness and robustness in their results. 
These issues are even more critical when these effort 
prediction approaches are used during the early phases of 
the software development lifecycle (for instance, effort 
predictors along with their relationships to effort are 
characterized as being more imprecise and uncertain at 
requirements development phase, than those of later 
development phases, like design). 

2. Effort Estimation Models 

Software effort estimation stands as the oldest and most 
mature aspect of software metrics towards rigorous 
software measurement. Considerable research had been 
carried out in the past, to come up with a variety of effort 
prediction models. This section discusses the evolution of 
both algorithmic and non-algorithmic estimation 
techniques overtime. 

2.1 Algorithmic Models 

Algorithmic models predict effort relying upon the 
accurate estimate of either size of software in terms of 
lines of code (LOC), number of user screens, interfaces, 
complexity, etc. at a time when uncertainty is mostly 
present in the project [5]. Boehm was the first researcher 
to consider software engineering economically. He came 
up with a cost estimation model, COCOMO-81 in 1981, 
after investigating a large set of data from TRW in the 
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1970s assuming that the effort grows more than linearly 
on software size [6]. Putnam also developed an early 
model known as SLIM in 1978[7]. Both these models 
make use of data from past projects and are based on 
linear regression techniques, take number of lines of code 
(about which least is known very early in the project) as 
the major input to their models. A survey on these 
algorithmic models and other cost estimation approaches 
is presented by Boehm et. al.[8]. Algorithmic models such 
as COCOMO are unable to present suitable solutions that 
take into consideration technological advancements [3]. 
This is because, these models are often unable to capture 
the complex set of relationships (e.g. the effect of each 
variable in a model to the overall prediction made using 
the model) that are evident in many software development 
environments [9].They can be successful within a 
particular type of environment, but not flexible enough to 
adapt to a new environment. They cannot handle 
categorical data (specified by a range of values) and most 
importantly lack of reasoning capabilities. These 
limitations have paved way for the number of studies 
exploring non-algorithmic methods (e.g. Fuzzy 
Logic)[10]. 

2.2 Soft Computing Based Models 

Newer computation techniques, to cost estimation that are 
non-algorithmic i.e. approaches that are soft computing 
based came up in the 1990s, and turned the attention of 
researchers towards them. This section discusses some of 
the non-algorithmic models for software development 
effort estimation. Soft computing encompasses 
methodologies centering in fuzzy logic (FL), artificial 
neural networks (ANN) and evolutionary computation 
(EC). These methodologies handle real life ambiguous 
situations by providing flexible information processing 
capabilities.  
 
Soft computing techniques have been used by many 
researchers for software development effort prediction to 
handle the imprecision and uncertainty in data aptly, due 
to their inherent nature. The first realization of the 
fuzziness of several aspects of one of the best known [11], 
most successful and widely used model for cost 
estimation, COCOMO, was that of Fei and Liu [6]. They 
observed that an accurate estimate of delivered source 
instruction (KDSI) cannot be made before starting the 
project; therefore, it is unreasonable to assign a 
determinate number for it. Jack Ryder investigated the 
application of fuzzy modeling techniques to two of the 
most widely used models for effort prediction; COCOMO 
and the Function-Points models, respectively [5]. Fuzzy 
Logic was applied to the cost drivers of intermediate 
COCOMO model (the most widely used version) as it has 
relatively high estimation accuracy than the basic version 

which is quite comparable to the detailed version [12]. The 
study ignored the key project attribute “size” to estimate 
the software development effort.  The resulting model 
lacked in one of the most desirable aspect of software 
estimation models i.e. adaptability. Musilek et al. applied 
fuzzy logic to represent the mode and size as input to 
COCOMO model [13]. The study was not adaptive as it 
lacked fuzzy rules which are definitely important to 
augment the system with expert’s knowledge. 
 
Ahmed et al. went a step further and fuzzified the two 
parts of COCOMO model i.e., nominal effort estimation 
and the adjustment factor. They proposed a fuzzy logic 
framework for effort prediction by integrating the 
fuzzified nominal effort and the fuzzified effort multipliers 
of the intermediate COCOMO model [10].  Knowing the 
likely size of a software product before it has been 
constructed is potentially beneficial in project 
management [14]. The results suggest that with refinement 
using data and knowledge, fuzzy predictive models can 
outperform their traditional regression-based counterparts. 
 
Boetticher has described a neural network approach for 
characterizing programming effort based on internal 
product measures [15]. A study assessed the capabilities of 
a neuro-fuzzy system in comparison to other estimation 
techniques and models [3]. Neuro-fuzzy systems combine 
the valuable learning and modeling aspects of neural 
networks with the linguistic properties of fuzzy systems. 
An accuracy of within 25% of actual effort more than 75% 
of the time can be achieved for one large commercial data 
set for a neural network based model when used to 
estimate software development effort [16].  
 
In summary, the previous research reveals that all of the 
soft computing-based software effort prediction models 
that exist, lack in some aspect or the other. There is still 
much uncertainty as to what prediction technique suits 
which type of prediction problem [17]. So, there is a 
compelling demand to develop a single soft computing 
based model which handles tolerance of imprecision in the 
input at the preliminary phases of software engineering, 
addresses the fuzzification of one of the key attribute i.e. 
size of the project, incorporates expert’s knowledge in a 
well-defined manner, allows total transparency in the 
prediction system by prediction of results through rules or 
other means, adaptability towards continually changing 
development technologies and environments[18]. Properly 
addressing all these issues would position soft computing-
based prediction techniques as models of choice for effort 
prediction, considering the promising features already 
present in them. 
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3. Optimized Fuzzy Logic Based Framework 

This research developed an optimized fuzzy logic based 
framework to handle the imprecision and uncertainty 
present in the data at early stages of the project to predict 
the effort more accurately. The said framework is built 
upon an existing cost estimation model—COCOMO. The 
choice is justified in a way that, while many traditional 
models have been said to perform poorly when it comes to 
cost estimation, COCOMO-81 is said to be the best known 
[11], most plausible[13],and most cited [3] of all traditional 
models. The COCOMO model is a set of three models: 
basic, intermediate, and detailed [19]. This research used 
intermediate COCOMO model because it has estimation 
accuracy that is greater than the basic version, and at the 
same time comparable to the detailed version [12]. 
COCOMO model takes the following as input: (1) the 
estimated size of the software product in thousands of 
Delivered Source Instructions (KDSI) adjusted for code 
reuse; (2) the project development mode given as a 
constant value B (also called the scaling factor) ; and (3) 15 
cost drivers [19, 20]. The development mode depends on 
one of the three categories of software development modes: 
organic, semi-detached, and embedded. It takes only three 
values, {1.05, 1.12, 1.20}, which reflect the difficulty of 
the development. The estimate is adjusted by factors called 
cost drivers that influence the effort to produce the software 
product. Cost drivers have up to six levels of rating: Very 
Low, Low, Nominal, High, Very High, and Extra High. 
Each rating has a corresponding real number (effort 
multiplier), based upon the factor and the degree to which 
the factor can influence productivity. The estimated effort 
in person-months (PM) for the intermediate COCOMO is 
given as: 
 

Effort = A × [KDSI] B × i=1∏
 15EMi     (1) 

 
The constant A in “(1)” is also known as productivity 
coefficient. The scale factors are based solely on the 
original set of project data or the different modes as given 
in Table 1. 

Table 1: COCOMO Mode Coefficients and Scale Factor Values 

 
The contribution of effort multipliers corresponding to the 
respective cost drivers is introduced in the effort 
estimation formula by multiplying them together. The 
numerical value of the ith cost driver is EMi and the 
product of all the multipliers is called the estimated 
adjustment factor (EAF).  

The actual effort in person months (PM), PM total is the 
product of the nominal effort (i.e. effort without the cost 
drivers) and the EAF, as given in “(2)”. 
 

PM total = PM nominal × EAF          (2)  

(where PM nominal = A × [KDSI] B and EAF = i=1∏
 15EMi) 

The proposed framework addresses the limitations of 
existing soft computing based techniques for effort 
estimation by: 

 Fuzzification of the two components of the COCOMO 
model (the nominal effort part and cost driver part) that 
capture imprecision in an organized manner. 

 Incorporating expert’s knowledge by providing a 
transparent and well defined approach by developing 
an appropriate rule base that can be modified.  

 Integrating the two components of the COCOMO 
model viz. the nominal effort prediction component 
and the effort adjustment component.  
 
The framework will thus allow fuzzy and expert 
knowledge incorporation into the system. 

4. Research Methodology 

Imprecision is present in all parameters of the COCOMO 
model. The exact size of the software project to be 
developed is difficult to estimate precisely at an early 
stage of the development process. COCOMO does not 
consider the software projects that do not exactly fall into 
one of the three identified modes. In addition, the cost 
drivers are categorical. Obviously, this limits the 
correctness and precision of estimates made. There is a 
need for a technology, which can overcome the associated 
imprecision residing within the final results of cost 
estimation. The technique endorsed here deals with fuzzy 
sets. In all the input parameters, fuzzy sets can be 
employed to handle the imprecision present.  
 
In the course of research work the following steps were 
undertaken: 

4.1 Choice of membership functions 

Appropriate membership function representing the size of 
the project which is an input to the basic component 
(estimating nominal effort) of the underlying model i.e. 
COCOMO was identified. Gaussian membership functions 
proved superior to the triangular membership functions 
used in most of the previous researches for fuzzifying the 
sizes of projects, to address the vagueness in the project 
sizes. They are inherently adaptable, due to their 
nonlinearity and also allow a smoother transition in the 

Mode A B 

Organic 3.2 1.05 

Semidetached 3.0 1.12 

Embedded 2.8 1.2 
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intervals representing size as a linguistic variable as shown 
in “Fig. 1”. 
 
The same type of member ship functions are used for 
representing software development mode, to accommodate 
the projects falling between the identified modes as shown 
in    “Fig. 2”. In this way the framework can handle 
changing development environments, by accommodating 
projects that may belong partially to two categories of 
modes (80% semi- detached and 20% embedded). The 
resulting effort is also represented with Gaussian 
membership functions shown in “Fig. 3”. 
 

 

Fig. 1   Input variable “size” represented as Gaussian MF 

 

Fig. 2   Input variable “mode” represented as Gaussian MF 

 

Fig. 3   Output variable “effort” represented as hypothetical Gaussian MF 

4.2 Development of the fuzzy rules for nominal effort 
component 

The basic component of the COCOMO model is used to 
develop the fuzzy rules to estimate nominal effort, 
independent of cost drivers thereby finding 
correspondence between mode, size and resulting effort by 
dividing input and output spaces into fuzzy regions [21, 
22]. The parameters of the effort MFs were determined for 
the given mode, size pair. 3 MFs representing effort were 

obtained for a random size and 3 modes respectively. 
Rules formulated, based on the fuzzy sets of modes, sizes 
and efforts appear in the following form: 

 
IF mode is organic and size is s1 THEN effort is e11 
IF mode is semi-detached and size is s1 THEN effort is 
e21 
IF mode is embedded and size is s1 THEN effort is e31 
IF mode is organic and size is s2 THEN effort is e12 
IF mode is semi-detached and size is s2 THEN effort is 
e22 
IF mode is embedded and size is s2 THEN effort is e32 
….. 
IF mode is mj and size is si THEN effort is eji 
(1 ≤ i ≤ n, 1 ≤ j ≤ 3) 

where mj are the fuzzy values for the fuzzy variable 
mode, si(1 ≤ i ≤ n ) are the fuzzy values for the fuzzy 
variable. 

 4.3 Fuzzification of cost drivers 

The cost drivers are fuzzified using triangular and 
trapezoidal fuzzy sets for each linguistic value such as 
very low, low, nominal, high etc. as applicable to each 
cost driver. Separate independent FIS is used for every 
cost driver. Rules are developed with cost driver in the 
antecedent part and corresponding effort multiplier in the 
consequent part. The defuzzified value for each of the 
effort multiplier is obtained from individual FISs after 
matching, inference aggregation and subsequent 
defuzzification. Total EAF is obtained after multiplying 
them together.  
 
Sample fuzzification of main storage used (STOR) cost 
driver based on Tables 2 and 3 is illustrated in “Fig. 4 and 
5”.  

Table 2: The STOR(Main Storage) Cost Driver Definition                       
in terms of percentage 

Nominal High Very High Extra high 

<=50% 70 85 95 

Table 3: The STOR(Main Storage) Effort Multiplier                                  
Range Definitions 

Nominal High Very High Extra high 

1.0 1.06 1.21 1.56 
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Fig. 4 Antecedent MFs for the FIS of cost driver main storage 

 

Fig. 5 Consequent MFs for the FIS of cost driver main storage 

From “Figs. 4 and 5” rules of the following form are 
obtained: 
If stor is nom (nominal) Then Effort is unchanged 
If stor is high Then Effort is inc (increased) 
If stor is vhigh (very high) Then Effort is incsig (increased 
significantly) 
If stor is ehigh (extra high) Then Effort is incdra 
(increased drastically) 

4.4 Integration of components 

Total software effort is obtained by multiplication of crisp 
effort from the basic part and crisp EAF from the cost 
driver part (the product of effort multipliers corresponding 
to each of the 15 cost drivers).  
 
In concluding the presentation of the framework, it is 
worth noting that rules are developed for the nominal 
effort part using COCOMO as the underlying model. The 
rules formulated for the cost drivers’ are simply developed 
into FISs based on the tables in [21]. However, the 
membership functions definition and rules formulation are 
open to experts’ knowledge, because our approach is 
transparent. 

5. Experiments and Results 

The approach has been validated by performing diverse 
experiments, on the proposed framework. COCOMO 
nominal equation has been used to generate artificial 
datasets randomly for developing the FIS for software 
effort prediction. The prediction capabilities of the FIS 
were tested using different numbers of fuzzy sets (3, 5, 
and 7) for input variable, size with triangular member-ship 
functions (TMFs) as well as Gaussian membership 
functions (GMFs). The performance of the FIS improved 
with the increased number of membership functions as 
shown in Figs. 6 and 7. The performance of the FIS is best 
when 7 MFs are used for size.  
 
This is primarily due to a suitable rule base with respect to 
the fuzzy partitions of size, initially. This suggests that the 
number of fuzzy sets should be enough to cover the rules 
of the rule base appropriately and there is no under fitting 
or over fitting. 
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Fig. 6 Nominal Effort of FIS with 3,5,7 TMFs and COCOMO 

using COCOMO public dataset 
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 Fig. 7 Nominal Effort of FIS with 3,5,7 GMFs and COCOMO 
using COCOMO public dataset 

 
The graph in Fig. 8 shows a comparison of nominal effort 
predicted by FIS using 7 triangular and 7 gaussian  
member-ship functions representing input variable, size 
against the nominal effort predicted by COCOMO. The 
experiments establish that gaussian membership functions  
perform better than triangular membership functions in 
terms of effort prediction. 
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 Fig. 8 Comparison of Nominal Effort of FIS with 7 TMFs, 7GMFs      

and COCOMO using COCOMO public dataset 
 

A comparison is made for the mean magnitude of relative 
error (MMRE) in the estimate of nominal and total effort 
(adjusted with the effort multipliers) using 3, 5, and 7 
membership functions for size against the prediction of 
COCOMO as shown in “Figs. 9 and 10”.  

 

 
 

Fig. 9 MMRE in Nominal Effort predicted by FIS 
using 3, 5 and 7 TMFs and GMFs 

 

 
 

Fig. 10 MMRE in Total Effort predicted by FIS 
using 3, 5 and 7 TMFs and GMFs 

The values of MMRE in nominal effort predicted is 39.6 
using COCOMO model, 73.14, 46.25, and 45.89 using 
FIS with GMFs and 62.23, 51.73 and 48.92 using FIS with 
TMFs.  The values of MMRE in total effort predicted is 
38.83 using COCOMO model, 64.26, 41.06, and 38.38 
using FIS with GMFs and 60, 46.17 and 41.4 using FIS 
with TMFs. 

A quantitative measure of prediction quality is used to 
compare the prediction accuracy of our research approach 
to the actual values. The prediction quality of the FISs 
using 3, 5, and 7 member-ship functions is compared in 
terms of prediction accuracy both for nominal and total 
efforts. The quantity used in the experiments is prediction 
at level x – PRED(x). Suppose there is a set of n projects, 
let y be the number of them, whose mean magnitude of 
relative error is less than or equal to x, then: 

PRED (x) = y/n          (3) 
 

An acceptable level for mean magnitude of relative error is 
something less than or equal to 0.25. The prediction 
accuracy of FISs in terms of predicted nominal effort and 
total using 3, 5, and 7 TMFs and GMFs for size is shown 
in Table 4. The results suggest that GMFs outperform 
TMFs in terms of effort prediction within 25% of the 
actual effort, when used to represent size and mode.  
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Table 4: Readings of PRED (25) of FIS 

Number 
of MFs 

Prediction Accuracy 
PRED(25) using 

Triangular MFs for 
Effort 

Prediction Accuracy 
PRED(25) using 

Gaussian MFs for 
Effort 

Nominal Total Nominal Total 

3 16.92 15.38 15.38 18.46 

5 20 33.84 32.3 41.54 

7 33.84 41.54 35.38 43.07 

The validation experiments are carried out on the FIS 
using COCOMO public dataset. The validation was 
performed using a subset of the real life projects whose 
size fall in the range 1-100 KDSI. This is justified because 
the original FIS was developed over the same range of size 
using artificial datasets generated using nominal effort 
component of COCOMO.  
     
The comparison of nominal effort prediction by FIS and 
intermediate COCOMO model is made on actual real 
project data and is shown graphically in “Fig. 11”.This 
validation is of extreme importance because it measures 
the prediction quality of the proposed framework against 
the actual real life data of software development projects.  

Another validation experiment compares the 
comprehensive effort predicted by FIS and intermediate 
COCOMO model with the incorporation of effort 
multipliers as given in the actual real project data. It is 
shown graphically “Fig. 12”. 
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Fig. 11 Nominal Effort predicted by FIS, COCOMO and Actual        
effort using COCOMO public dataset 
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Fig. 12 Total Effort predicted by FIS, COCOMO and Actual             

effort using COCOMO public dataset  
 

A comparison is made between the quality of prediction 
results by plotting the percentage error in nominal effort 
predicted by the FIS and nominal effort estimated by the 
COCOMO model against the sizes of the projects as given 
in the COCOMO database. This is represented graphically 
by “Fig. 13”. The results indicate that the percentage 
errors in the nominal effort predicted by the FIS are less 
than 50% for most of the projects except a few. 
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Fig. 13 Percentage Error in nominal effort predicted by 
FIS and COCOMO using COCOMO public dataset 

 

Another comparison between the comprehensive efforts 
taking into account the cost drivers as well in terms of 
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percentage errors in both the proposed FIS and COCOMO 
model is shown in “Fig. 14”. The errors fall in the range of 
0-50% for most of the projects and even better the 
prediction of age old COCOMO model except for one 
project as indicated in the graph. This may be attributed to 
the fact that the FIS has been developed using COCOMO 
as the underlying model. 
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Fig. 14 Percentage Error in total effort predicted by FIS                        
and COCOMO using COCOMO public dataset 

6. Conclusions and Future Scope 

The research presents a transparent, optimized fuzzy logic 
based framework for software development effort 
prediction. The Gaussian MFs used in the framework have 
shown good results by handling the imprecision in inputs 
quite well and also their ability to adapt further make them 
a valid choice to represent fuzzy sets. The framework is 
adaptable to the changing environments and handles the 
inherent imprecision and uncertainties present in the 
inputs quite well. The framework is augmented by the 
contribution of the experts in terms of modifiable fuzzy 
sets and rule base in accordance with the environments. 
The performance of the framework is demonstrated in 
terms of empirical validation carried on live project data of 
the COCOMO public database. However, a little more 
insight into the training strategies and availability of more 
real life data suggest a room for improvement in the 
prediction results.  
 

This research indicates directions for further research. 
Some of the identified future motivations of research are 
as follows: 

1) The proposed framework can be analyzed in terms of 
feasibility and acceptance in the industry. 

2) The framework can be deployed on COCOMO II 
environment with experts providing required 
information for developing fuzzy sets and an 
appropriate rule base.  

3) With a little more knowledge in fuzzy logic, 
customized MFs can be developed to represent inputs 
more closely to tolerate imprecision and uncertainty in 
inputs so that the same is not propagated to the 
outputs. 

4) Novice training strategies can be incorporated to 
normalize the error measure.. 
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