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Abstract 

Extended Kalman Filter (EKF) has been a popular approach to 
localization a mobile robot. However, the performance of the 
EKF and the quality of the estimation depends on the correct a 
priori knowledge of process and measurement noise covariance 
matrices ( kQ and kR , respectively). Imprecise knowledge of 

these statistics can cause significant degradation in performance. 
This paper proposed the development of an Adaptive Neuro-
Fuzzy Extended Kalman Filtering (ANFEKF) for localization of 
robot. The Adaptive Neuro-Fuzzy attempts to estimate the 
elements of kQ and kR matrices of the EKF algorithm, at each 

sampling instant when measurement update step is carried out. 
The ANFIS supervises the performance of the EKF with the aim 
of reducing the mismatch between the theoretical and actual 
covariance of the innovation sequences. The free parameters of 
ANFIS are trained using the steepest gradient descent (SD) to 
minimize the differences of the actual value of the covariance of 
the residual with its theoretical value as much possible. The 
simulation results show the effectiveness of the proposed 
algorithm. 
 
Keywords: Extended Kalman Filter, Localization, Fuzzy 
Inference System and Neuro-Fuzzy  

1. Introduction 

Mobile robot localization is the problem of estimating a 
robot pose (position, orientation) relative to its 
environments. Two different kinds of localization exist: 
relative and absolute. Relative localization is also known 
as dead-reckoning (DR). It is realized through the 
measures provided by sensors measuring the dynamics of 
variables internal to the vehicle. Typical internal sensors 
are encoders which are fixed to the axis of the driving 
wheels. The basic drawback of this method is that the 
error of robot’s position and orientation generally grows 
unbounded with time. Absolute localization is performed 
processing the data provided by a proper set of sensors 
measuring some parameters of the environment in which 

the vehicle is operating. The methods to obtain absolute 
measurements can be divided into methods based on the 
use of landmarks and methods based on the use of maps. 
The main drawback of absolute measures is their 
dependence on the characteristics of the environment. 
Possible changes to environmental parameters may give 
rise to erroneous interpretation of the measures provided 
by the localization algorithm. In this paper, we integrate 
the advantages of "the relative localization" and "the 
absolute localization" and make them complementary, 
which will enable the mobile robot to localize itself more 
accurately. To this purpose, data provided from odometric, 
laser range finder and MAP are combined together 
through EKF. The localization based on EKF proposed in 
the literatures [1-9] for the estimation of robot pose. 
However, a significant difficulty in designing an EKF can 
often be traced to incomplete a priori knowledge of the 
process covariance matrix kQ and measurement noise 

covariance matrix kR [10-13]. In most robot localization 

application these matrices are unknown. On the other 
hand, it is well known how poor estimates of noise 
statistics may seriously degrade the Kalman filter 
performance [12], [16]. One of the efficient ways to 
overcome the above weakness is to use an adaptive 
algorithm for localization. There have been many 
investigations in the area of adaptive algorithm for robot 
localization [5], [8], [9], [18], [19], [20]. In [15] a Neuro-
fuzzy assisted extended kalman filter-based approach for 
simultaneous localization and mapping (SLAM) problem 
is presented. In this algorithm, a Neuro-fuzzy approach is 
employed to adapt the matrix kR  only while kQ is 

completely known. 
Also, as the computational load of this algorithm is very 
high, it cannot be implemented in real-time application. In 
this paper the EKF coupled with adaptive Neuro-Fuzzy 
Inference System has been presented to adjust the matrices 

kQ and kR . Main advantage of this algorithm, compared 

to prior ones, is its fast and efficient approach in terms of 
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the computational cost and therefore its suitability for real-
time applications. 
 
2. Kinematics Modeling Robot and its 
Odometery 
The state of robot can be modeled as ( , ,x y  ) that 

( ,x y ) are the Cartesian coordinates and   is the 

orientation respectively to global environment. The 
kinematics equations for the mobile robot are in the 
following form [1-2] and [4]: 
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Where B is the base line of the vehicle and 

 Tu V  is the control input consisting of a velocity 

input V and a steer input , as shown in Fig.1. 

 

 
Fig.1 The robot and Feature 

 

 The process noise  Tv
v v v  is assumed to be applied 

to the control input, vv to velocity input, and v  to the 

steer angle input. The vehicle is assumed to be equipped 
with a sensor (range-laser finder) that provides a 

measurement of range ir and bearing i to an observed 

feature i relative to the vehicle as following: 
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where ( , )
i i

x y is the position landmark in map and 

 Tr
W    related to observation noise. 

 
3. Extended Kalman Filter (EKF)  
Kalman filter (KF) is widely used in studies of dynamic 
systems, analysis, estimation, prediction, processing and 
control. Kalman filter is an optimal solution for the 
discrete data linear filtering problem. KF is a set of 
mathematical equations which provide an efficient 
computational solution to sequential systems. The filter is 
very powerful in several aspects: It supports estimation of 
past, present, and future states (prediction), and it can do 
so even when the precise nature of the modeled system is 
unknown. The filter is derived by finding the estimator for 
a linear system, subject to additive white Gaussian noise. 
However, the real system is non-linear; Linearization 
using the approximation technique has been used to 
handle the non-linear system. This extension of the 
nonlinear system is called the Extended Kalman Filter 
(EKF). The general non-linear system and measurement 
form is as given by equations (3) and (4) as follows: 

1 ( , )k k k kx f x u w                                               (3)  

( )k k kz h x v                                                         (4) 

The system, measurement noises are assumed to be 
Gaussian with zero mean and are represented by their 
covariance matrices kQ  and kR : 

{ } 0

      k j 
[ ]

0       k j 

k

kT
k j

E w

Q
E w w




  

                                          (5) 

{ } 0

         k j 
[ ]

0          k j 

k

kT
k j

E v

R
E v v




  

                                          (6) 

The Extended kalman filter algorithm has two groups of 
equations [14]: 
1) The prediction equations: 
The extended Kalman filter predicts the future state of 

system 1ˆkx 
  based on the available system model (.)f  

and projects ahead the state error covariance matrix 1kP 
  

using the time update equations: 

1ˆ ( , )k k kx f x u
                                                       (7) 

1
T T

k k k k u k uP f P f G Q G
                                    (8)                          

Where 
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2) Measurement updates equations 

 Once measurements kz become available the Kalman 

gain matrix kK is computed and used to incorporate the 

measurement into the state estimate ˆkx . The state error 

covariance for the updated state estimate kP  is also 

computed using the following measurement update 
equations: 

1( )T T
k k k k k k kK P H H P H R                             (11) 

ˆ ˆ ˆ( ( ))k k k k kx x K z h x                                     (12)                                                                                                    

( )k k k kP I K H P                                                (13)                                                                                  

Where I is an identity matrix and kH is following: 
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In the above equations, ˆkx is an estimation of the system 

sate vector kx and kP is the covariance matrix 

corresponding to the state estimation error defined by 

ˆ ˆ{( )( ) )T
k k k k kP E x x x x                               (15) 

The difference between the prediction and observed 
measurements is called the measurement innovation, or 

residual, generally denoted as kr : 

ˆ( )k k kr z h x                                                        (16)                                                                             

The innovation represents the additional information 
variable to the filter in consequence to the observation 

kz . For an optimal filter the innovation sequence is a 

sequence of independent Gaussian random variables. 
 

4. Localization Based on EKF 
We assume that robot knows map of environment. The 
EKF estimates a robot pose given a map of the 
environment and range-bearing of landmarks 
measurements. For this purpose, the data provided by 
odometric, map and laser range-finder are fused together 
by means of an EKF. To design EKF, The continuous time 
model formulated must be reformulated in the discrete 
time. The discrete time kinematics model is: 
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 (17)                         

And the discrete time observation model is: 
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Fig.2 briefly describes the cyclic localization procedure 
during the localization procedure using EKF. 

 
Fig.2 Localization algorithm based on EKF 

 
The algorithm consists of such steps as position 
prediction, observation, measurement prediction, matching 
and estimation. The detailed discussion of these steps will 
be followed. 
Step1) Initialization 

Initialize the state vector 0x̂ and covariance matrix 0P  of 

the mobile robot 
Step 2) Robot Position Prediction 
 The robot position at time step k+1 is predicted based on 
its old localization (at time step k) and its movement due 

the control input ku : 
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1ˆ ( , )k k kx f x u
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Step3) Measurement prediction 

B y using the predicted robot position 1ˆkx 
 and the 

current map we can generate the predicted measurement 
ˆ

kz according to equation (22). 
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The error between the actual measurement kz and the 

predicted measurement based on estimation of the state is: 
ˆ

k k kv z z                                                               (23) 

Where kv is innovation sequence (or residual) with the 

covariance: 
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Step 4) Matching 
The goal of the matching procedure is to produce an 
assignment from measurements to the landmarks (stored in 
the map). If the measurement result satisfies the following 
inequality, it is thought to be eligible, otherwise, it is not, 
and it will be abnegated. 

T

k k kv S v G                                                             (26)                                                                                                                    

Step 5) Estimation 

ˆ ˆ ˆ( ( ))
k k k k k

x x K z h x               (27)                                                                                                                               

Where kK is gain the kalman gain: 
1( )

k k k k

T T
k k kK P h h P h R                                   (28)                                                                                                                            

The new state covariance matrix is: 

( )
k k kkP I K Ph                                                       (29)  

Step 6) Return to step 2  
                                                                                                                                    
5. Localization Based on Adaptive Neuro-
Fuzzy EKF (ANFEKF) 
As stated earlier, localization based on EKF assumes 
complete a priori knowledge of the process and 

measurement noise statistics; matrices kQ and kR . 

However, in most application these matrices are unknown. 

An incorrect a prior knowledge of kQ and kR may lead 

to performance degradation [12] and it can even lead to 
practical divergence [13].One of the effective ways to 
overcome the above mentioned weakness is to use an 
adaptive algorithm. Two major approaches that have 
proposed for adaptive EKF are Multiple Model Adaptive 
Estimation (MMAE) and Innovation Adaptive Estimation 
(IAE) [12]. In this paper IAE adaptive scheme of the EKF 

coupled with ANFIS to adjust the matrix kQ and kR is 

purposed. The ANFIS is used to adjust the EKF and is 
prevented the filter from divergence.  
 

5.1 Localization based on ANFEKF ( kQ is fixed) 

The covariance matrix kR represents the accuracy of 

measurement instrument. Assuming that the noise 

covariance kQ is completely known, an algorithm to 

estimate the measurement noise covariance kR can be 

derived. In this case, an innovation based adaptive 
estimation (IAE) algorithm to adapt the measurement 

noise covariance matrix kR is derived. In particular, the 

technique known as covariance matching is used. The 
basic idea behind this technique is to make the actual 
value of the covariance of the residual to be consistent 
with its theoretical value [12]. The innovation sequence 

kr has a theoretical covariance kS that is obtained from 

EKF algorithm. The actual residual covariance ˆ
kC  can be 

approximated by its sample covariance, through averaging 
inside a moving window of size N as the following: 

1

1ˆ ( )
k

T

k i
i k N

iC r r
N   

                              (30)                        

Where 0i is first sample inside the estimation window. If 

the actual value of covariance ˆ
kC  has discrepancies with 

its theoretical value, then the diagonal elements of 

kR based on the size of this discrepancy can be adjusted. 

The objective of these adjustments is to correct this 
mismatch as far as possible. The size of the mentioned 
discrepancy is given by a variable called the degree of 
mismatch ( kDOM ), defined as 

ˆ
k k k

DOM S C                                                        (31)                            

The basic idea used by an ANFIS, to adapt the matrix 

kR is as follows:  

From equation (24) an increment in kR will increase 

kS and vice versa. Thus, kR can be used to vary kS  in 
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accordance with the value of kDOM  in order to reduce 

the discrepancies between kS and ˆ
kC .The adaptation of 

the ( , )i i element of kR  is made in accordance with 

the ( , )i i element of kDOM .The general rules of 

adaptation are as following: 

If ( , ) 0
k

DOM i i   then maintain kR unchanged 

If ( , ) 0
k

DOM i i   then decrease kR  

If ( , ) 0
k

DOM i i   then increase kR  

In this paper IAE adaptive scheme of the EKF coupled 
with adaptive Neuro-fuzzy inference system (ANFIS) is 
presented to adjust R . 
 

5.1.1 The ANFIS Architecture ( kQ is fixed) 

The ANFIS model has been considered as two-input-
single-output system. The inputs ANFIS are kDOM and   

kDeltaDOM . Here, kDeltaDOM is defined as following: 

1k k kDeltaDOM DOM DOM                                 (32) 

Fig.3 and Fig.4 present membership functions for  

( , )
k

DOM i i  and kDeltaDOM as shown.  

 

 
Fig.3 Membership function kDOM   

 

 
Fig .4 Membership function kDeltaDOM  

 

 
Fig .5.Membership function kAjdR  

In addition, adjustments of kR is performed using the 

following relation 

k k kRR R                                                              (33) 

 

 
Fig.6 Localization Based on ANFEKF ( kQ Fixed) 

 
where kR is ANFIS output and membership function of 

kR  is shown in fig.5. As size kDOM and R  is two, two 

system ANFIS to adjust EKF is used as shown in Fig.6. 
The following structure which is a five layers network is 
proposed in fig .7.  
 

 
 

Fig .7 The ANFIS Architecture ( kQ is fixed) 

 

Let l
iu and l

io denote the input to output from the i th 

node of the thl  layer, respectively. To provide a clear 
understanding of an ANFIS, the function of layer 1 to 
layer 5 are defined as follows: 
Layer 1: The node in this layer only transmits input 
values to the next layer directly, i.e. 

1 1
i io u                                                                        (34) 

Layer2: In this layer, each node only performs a 
membership function. Here, the input variable is fuzzified 
by using five membership functions (MFs).The output of 
the thi  MF is given as: 
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Where ijm  and ij are the mean and with of the Gaussian 

membership function, respectively. The subscript 
ij indicates the jth term of the ith input. Each node in 

this layer has two adjustable parameters: ijm  and ij  

Layer3: The nodes in this layer are rule nodes. The rule 
node performs a fuzzy and operation (or product 
inference) for calculating the firing strength.  

3 3
l i

i

o u                                                                  (36) 

Layer4: The node in this layer performs the normalization 
of firing strengths from layer 3, 
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u
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u
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
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                                                            (37) 

Layer5: This layer is the output layer. The link weights in 
this layer represent the singleton constituents ( iW ) of the 

output variable. The output node integrates all the 
normalization firing strength from layer 4 with the 
corresponding singleton constituents and acts as 
defuzzfier, 

25
5

1
i l l

l

R u w


                                                            (38) 

The fuzzy rules which complete the ANFIS rule base are 
as table.1. 

 
Table.1: Rule Table 

 
 
 
5.1.2 Learning Algorithm 
The aim of the training algorithm is to adjust the network 
weights through the minimization of following cast 
function: 

 21

2 kE e                                                                   (39) 

Where 

 ˆ
k k ke S C                                                               (40) 

By using the back propagation (BP) learning algorithm, 
the weighting vector of the ANFIS is adjusted such that 

the error defined in (39) is less than a desired threshold 
value after a given number of training cycles. The well-
known BP algorithm may be written as: 

( )
( 1) ( ) ( )

( )

E k
W k W k

W k
 
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

                                (41) 

Here   and W represent the learning rate and tuning 

parameter of ANFIS respectively. Let [ , , ]TW m w be 

the weighting vector of ANFIS. The gradient of E  with 
respect to an arbitrary weighting vector W  is as the 
following: 

 
( ) ( )

( )
( ) ( )

E k R k
e k

W k W k

  
     

                                      (42) 

By recursive applications of chain rule, the error term for 
each layer is first calculated, and then the parameters in 
the corresponding layers are adjusted. 
 

5.2 Localization based on ANFEKF ( kR Fixed) 

Assuming that the noise covariance matrix kR is 

completely known an algorithm to estimate matrix kQ can 

be derived. The idea behind the process of adaptation of 

kQ is as follows:Equation (8) can be rewritten as  

( )kk k
T T T

k k u k u k kh hS P G Rf f Q G                      (43) 

It may be deduced from equation (43) that a variation in 

kQ will affect the value of kS . If kQ is increased, then 

kS is increased, and vice versa. Thus, if a mismatch 

between kS and ˆ
kC is observed then a correction can be 

made through augmenting or diminishing the value of 

kQ .The tree general adaptation rules are defined as 

following 

1. If (1,1)kDOM  is L and (2, 2)kDOM  is L hen kQ is 

H 

2. If (1,1)kDOM  is Z and (2, 2)kDOM is Z then 

kQ is Z 

3. If (1,1)DOM is H (2,2)DOM  is H then kQ is L

Then kQ is adapted in this way  

k k kQQ Q                                                                  (44) 

Where kQ is the ANFIS output and (1,1)kDOM  and 

(2, 2)kDOM are ANFIS input.  

The ANFIS model has been considered as a two-input-
single-output system as previous section. Fig.8 shows the 
block diagram of Localization based on ANFEKF while 

kR is Fixed. 
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Fig.8  Localization Based on ANFEKF ( kR Fixed) 

 
6. Implementation and Results 
Experiments have been carried out to evaluate the 
performance of the proposed approach in comparison with 
classical method. 
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Fig.9 The experiment environment: The star point “*” denote the 
landmark 
 
Fig.9 shows the robot trajectory and landmark location. 
The star points (*) depict location of the Landmarks that 
are known. The initial position of the robot is assumed to 

be 0 0x  . The robot moves at a speed 3m/s and with a 

maximum steering angle 30 deg. Also, the robot has 4 
meters wheel base and is equipped with a range-bearing 
sensor with a maximum range of 20 meters and a 180 
degrees frontal field-of-view. The control noise 
is 0.3 m/sv   and 3o

  . A control frequency is 40 HZ  

and observation scans are obtained very 5 HZ  . The 

measurement noise is 0.1 m in range and 1o in bearing. 
The performance of the proposed method is compared 
with localization based on EKF where matrices kQ and 

kR  are kept static throughout the experiment The 

proposed method starts with the same kQ and 

kR matrices, but it keeps adapting the kQ and kR matrices 

according to the proposed scheme. The localization based 
on is known as a good choice when the associated 
statistical models are well known. Fig.10 shows 
performance of Localization based EKF and proposed 
method in this situation. It is observed that performance 
both algorithms are almost same. 
 

 
Fig.10 The figure shows the RMS error in localization Based on AFEKF 
and EKF (the results obtain over 50 Monte Carlo runs). In this 

experiment, measurement noise is 0.1r   , 1.0   and control 

noise is 0.3 m/sv  , 3o
  . 

 
However, the performance of localization based of EKF 
degrades when the knowledge of such statistics is 
inappropriate. For this purpose, we first consider the 
situation where the sensor statistics are set wrongly as: 

2.0
r

   and 0.1   and the noise covariance kQ is 

completely known. The proposed algorithm starts with a 
wrongly know statistics and then it adapts the kR  matrix, 

online, on the basis of ANFIS attempts to minimize the 
mismatch between the theoretical and actual values of the 
innovation sequence. The free parameters of ANFIS are 
automatically learned by SD during training. Fig.11 shows 
the root mean square error (RMSE) of localization based 
on EKF and FAEKF for 25 different runs. It is observed 
that state estimates from the FAEK are more accurate than 
the EKF. 
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Fig.11 The figure shows the RMS error in localization Based on AFEKF 
and EKF (the results obtain over 50 Monte Carlo runs). In this 

experiment, measurement noise is wrongly considered as 2r   , 

0.1   and control noise is truly considered as 0.3 m/sv  , 

3o
  .  

 

Now, we consider the situation where the uncertainties in 

control inputs are wrongly considered as: 0.03 m/s   

, 0.5 deg   and measurement covariance kR is 

completely known. The proposed algorithm starts with a 
wrongly know statistics and then adapt the kQ  matrix, 

online, on the basis of ANFIS attempts to minimize the 
mismatch between the theoretical and actual values of the 
innovation sequence. Fig.12 shows RMSE for this 
situation. Such as previous situation, it is observed that 
localization based on FAEKF is more accurate than 
localization based on EKF. 
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Fig.12 The figure shows the RMS error in localization Based on AFEKF 
and EKF (the results obtain over 50 Monte Carlo runs). In this 

experiment, measurement noise is truly considered as 2r   , 

0.1   and control noise is wrongly considered as 0.03 m/sv  , 

0.5o
   

 

Finally, the consistency of both localizations Based on 
AFEKF and EKF are compared. In this regard, we have 
considered the situation where the sensor statistics are set 

wrongly as: 2.0
r

   and 0.5   and the noise 

covariance kQ is completely known. To verify the 

consistency of both algorithms, average Normalized 
Estimation Error Squared (NEES) is used as a measure 
factor. For an available ground truth kx and an estimated 

mean and covariance ˆˆ ,x P , we can use NEES to 

characterize the filter performance: 
1ˆ ˆ( ) ( )T

k x k k x kx x P x x    .    (45)                        

Consistency is evaluated by performing multiple Monte 
Carlo runs and computing the average NEES. Given 
N runs, the average NEES is computed as 

1

1 N

k ik
iN

 


                                                              (46) 

Given the hypothesis of a consistent linear-Gaussian 
filter, kN  has a 2 density with dim( )kN x degrees of 

freedom [17]. Thus, for the 3-dimensional vehicle pose, 
with Twenty Monte Carlo simulations, the two sided 95% 
probability concentration region for k  is bounded by 

interval [2.02, 4.17]. 

 
Fig.13 Consistency of localization based on EKF 

 
Fig.14 Consistency of localization based on AFEKF 

 

Fig.13 and Fig.14 show that the consistency of 
localization Based on AFEKF is more than that of 
localization Based on EKF. 
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7. Conclusion 
The preset paper has proposed the development of a 
adaptive Neuro-Fuzzy inference system for localization 
based EKF when a priori knowledge is incorrect. The EKF 
is known as a choice for localization when a priori 
knowledge is well known. However, incorrect knowledge 
of these statistics can cause significant degradation in 
performance. The present scheme proposes to start the 
system with a wrongly known statistics and adapt the 
matrices kR and kQ , online, on the basis of ANFIS that 

attempt to minimize the mismatch between the theoretical 
and actual values of the innovation sequence. The free 
parameters of ANFIS are automatically learned by 
employing the steepest gradient descent during the 
training. Main advantage of proposed method is that 
consistency of this approach is more than localization 
based EKF. This is because that theoretical value of the 
innovation sequence is match with its actual value in 
proposed method. The two experiments in simulation have 
been carried out to study of performance the proposed 
method. The simulation results are shown that localization 
based on AFEKF is more accurate than localization based 
on EKF.  
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