
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 2, March 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

1

DRMS Co-design by F4MS

Aissam BERRAHOU, Mourad RAFI and Mohsine ELEULDJ

Computer Department, Mohammadia School of Engineers
Rabat, BP 765, Avenue Ibn Sina Agdal, Morocco

Abstract
In this paper, we present Digital Rights Management systems
(DRMS) which are becoming more and more complex due to
technology revolution in relation with telecommunication
networks, multimedia applications and the reading equipments
(Mobile Phone, IPhone, PDA, DVD Player,..). The complexity
of the DRMS, involves the use of new tools and methodologies
that support software components and hardware components
coupled design. The traditional systems design approach has
been somewhat hardware first in that the software components
are designed after the hardware has been designed and
prototyped. This leaves little flexibility in evaluating different
design options and hardware-software mappings. The key of co-
design is to avoid isolation between hardware and software
designs to proceed in parallel, with feedback and interaction
between the two as the design progresses, in order to achieve
high quality designs with a reduced design time. In this paper,
we present the F4MS (Framework for Mixed Systems) which is a
unified framework for software and hardware design
environment, simulation and aided execution of mixed systems.
To illustrate this work we propose an implementation of DRMS
business model based on F4MS framework.
Keywords: DRMS, software components, hardware
components, DRMS business model, co-design, F4MS
framework.

1. Introduction

In the heart of the digital economy, the Digital Rights
Management (DRM)[1], [2], [3], [4] must fulfill the
requirements of access control, use and diffusion of any
digital contents from computer, Mobile Phone or other
equipment through internet or telecommunication
network.

Systems that provide digital rights management (DRM)
[5] are very complex, extensive and not flexible: DRM
technologies must support a diversity of devices (Mobile,
PDA, PC, ..), users, platforms (Media player, web
server,..), and media (audio, video, image, text,
application, cloud computing..), and a wide variety of
system requirements concerning security, flexibility,
manageability, reuse, maintainability, interoperability.

Existing tools design [6], [7] for DRM systems are limited
only to software design in isolation with the hardware
design which is an important step in such systems. A
reading equipment with less performance cannot deal with
voluminous media content even if we have a high media
player performance.

The DRM community [8], [9], [10], [11], [12] needs a co-
design framework to design and develop a high
performance, flexible, reuse, maintainable DRM systems
with less cost time to deal with rapid growing DRM
market.

The main focus for the development of mixed systems,
using co-design framework, remains in the partitioning of
tasks. However the major challenges of mixed systems are
their development and use, taking into account the
coexistence between software and hardware, as well as the
multiple and complex interactions between various
components.

The main goal of this work is not only the proposition of a
design methodology (flexible) for the specification and the
partitioning of software / hardware, but also provides a
framework for the implementation of systems
incorporating both hardware and software components, as
well as the proposition of a general model for design and
execution of mixed systems.

This paper is organized as follows. Firstly, section 2
presents the standard DRMS Architecture. Then Section 3
presents the F4MS framework for the design and
execution of mixed systems. It describes the design
methodology and the general model of these systems.
Then, Section 4 presents the design and implementation of
a mixed system for DRMS business Model. Finally,
conclusion is presented in section 5.

2. Standard DRMS architecture

A standard DRMS architecture (figure1) is composed by
three components: Creation, distribution and consumption
of the digital content [6]:

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 2, March 2010
www.IJCSI.org

2

Consumption: Consumers want to be able to browse the
content catalog of the on-line DRM system where the
content at stake can be obtained. Since consumers also
need a license, they must be able to select a license type
and view the usage rules associated with it. Generally,
consumers first have to pay, one way or another; different
business models should be possible (e.g. subscription,
pay-per-license, or pay-per-use). When time-based
licenses expire, it must be possible to update them, which
may also require some financial transaction. Consumers
also want to browse their obtained licenses locally and
view the usage rules in a human readable format. Finally,
consumers want to consume the protected content,
according to the usage rules associated with the
corresponding license. In order to fetch licenses (and
sometimes also protected content), consumers need to
authenticate to the on-line DRM system.

Creation: Content Producers want to easily compose a
contract. Both content and contract must be submitted to
the on-line DRM system. After some time, they may want
to update the contract or maybe even cancel it, i.e. stop the
distribution of the content. Content producers expect a
financial compensation from the DRM service for the
trade of their content. Therefore, they want to receive
statistical information from the DRM service about the
number of downloads or content usage patterns. In order
to query or submit content to the on-line DRM system,
content producers need to authenticate themselves.

Distribution and publishers: When one or more DRM
clients are no longer secure, their right to consume content
must be revoked. It may also be necessary to update some
parts of the DRM system (and the DRM client). Content
publishers may want an overview of system usage
patterns. When content is found mass-distributed, the
source of abuse must be identifiable.

An example of standard DRMS is as follow (figure1):

Fig. 1 Standard DRMS architecture

This standard DRMS work as follow:

 User requests a digital content.
The content server demand to user to fill some
information.
User sends the information.
The Content server requests license generation to
license server.
The license server generate license and send it to the
content server.
The content server gives to user authorization to read
the digital content.

The correspondent UML sequence diagram is illustrated

by the figure 2.

Fig. 2 Sequence diagram

After analysis of DRMS, we find that they consist of two
parts in constant interaction: hardware components (PC,
iPhone, PDA, License server, ...) and software
components (media player, web server, license generator
application...).

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 2, March 2010
www.IJCSI.org

3

Existing tools design for DRM systems [1], [2] are
limited only to software design in isolation with the
hardware design which is an important step in such
systems. A reading equipment with less performance
cannot deal with voluminous media content even if we
have a high media player performance.

The DRM community needs a co-design framework to
design and develop a high performance, flexible, reuse,
maintainable DRM systems with less cost time to deal
with rapid growing DRM market.

In the next section, we will present a co-design
framework which is a unified framework for software and
hardware design environment, simulation and aided
execution of mixed systems. The co-design framework
used is called F4MS (Framework For Mixed Systems)

2. Framework for mixed systems

F4MS (Framework for mixed systems) [13] represents an
extension of the TI4CS framework [14] (Tools Integration
for Complex Software) which not include only software
components but also hardware components. This new
extension is dedicated to the design of systems based on
execution graph. The design of this type of systems by the
F4MS framework is made in two stages: the first stage
consists in defining all the components (Software and\or
hardware) necessities for the system to realize. The second
stage consists in integrating these components in the form
of a execution graph, which contains the description of the
final application, i.e how the components are organized
(position of the component in the graph), and how they
will interoperate with each other.

In the following, we present the characteristics of F4MS
framework and the design methodology.

2.1 Features of F4MS

F4MS has the same characteristics of TI4CS framework
[13], [14], [15] at the same time gives the possibility of
integrating two types of components completely different
in terms of design and architecture.

We quote here a number of characteristics that we have
considered during the design stage of the new version of
that framework:

A modeling of several levels of abstraction: The
specification can use levels of abstraction combined to
accelerate simulation, because in certain cases, any detail
is not necessary to test the concept of a design and some of
its functionalities.

A separation between the communication model and
the treatment model describing the system: the size
(format) has to allow a refinement of the communication

network between independent modules and the
optimization of the internal behavior of system
components.

Heterogeneity is the possibility to use multiple
programming languages and hardware architectures
(FPGA, ASIC, etc...), each one for a different part of the
system. However, and since each one of these elements
has these properties which can be exploited for the
optimized analysis and implementation. These properties
are different from a one model to another which inhibits
the analysis and the optimization of the whole system
beyond the limits of the language and hardware
architecture, and thus the platform must resolve this
problem.

Distributed Validation: it makes it possible to distribute
system modules to be validated through a network. It is
then possible to simulate a whole system while using a
suitable simulator for each development team. The
simulators do not any more need to be all grouped on a
machine or a particular site which generally requires a
more computing power. The teams can then collaborate in
the level of simulation and of the development. Of course,
the simulation performances are dependent on the network
used and its load during the simulation of the system.

2.2 Design methodology

The design methodology of mixed architectures [16], [18],
grouped the technical aspects and the organization aspects.
It coordinates the use of several combined tools of
conception and the cooperation of several aspects bound at
all level of a system development. The teams of the
software and the teams of the hardware can work in
parallel, in an environment of cooperation and
collaboration which reduces the development cycle of the
conception [18], [19], [20].

The designers must take several decisions to clarify the
details of this architecture [21], [22], in a consistency that
allows the best compromise driving performances / area /
consumption / flexibility / reusability / manageability/
quality/ interoperability/cost design/time to market.

The main design steps are summarized below:

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 2, March 2010
www.IJCSI.org

4

2.2.1 System specification
They are high level specifications of abstraction and allow
expressing the needs of a designed system:

Functional specifications describe with exactitude what
the system will have to carry out (details of the operations
to be done, relations between inputs and outputs, and
results to produce).

Non-functional Specifications describe the conditions
under which the system must operate: meet performances,
consumption, average yield, the cost of manufacture, etc.

2.2.2 Architecture
This stage consists of three steps [14]:

The partitioning or splitting of the system to
software/hardware component based on the
estimation performance: explore the alternatives of
design to identify those which adapt best to the
constraints of the system. This step carries out the
transposition of the functions of the system on software
and hardware components. The components are
software entities, programmable processors, FPGAs,
and memories.

Development, Maintenance, Reuse: This step consist
of implementing new components, maintain existing
components and trying to adapt them to the context, or /
and reuse of components developed by other agencies.

The co-simulation is an important step in validating the
behavior of a component after the Software/Hardware
partitioning.

2.2.3 Integration
The execution graph [13] of F4MS is a workflow for the
description of mixed systems architectures, based on
software / hardware components. He allows describing a
system as being a set of components (monolithic or
composite) which implement interfaces, connectors
(interconnections between components) and their
compositions.

A component of execution graph presented as a
calculation unit, or a data warehouse. An interface
specifies the services which the component provides. The
connectors model the sequencing and interaction between
components through their interfaces. A composition
represents a graph of components, connected between
them using connectors.

The execution graph (Fig 3) is consists of two graph:
the scheduling and parallelism graph (to organize the
components and describe the sequence of execution) and
the interaction graph (to ensure interoperability between
components), it also includes information about the
parameter setting and the configuration of the properties of
execution with each component.

Fig. 3 Meta-model of mixed systems

3. Application

In this section we will describe the design phases of
DRMS business model using F4MS co-design framework.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 2, March 2010
www.IJCSI.org

5

The DRMS business model proposed is illustrated by the
UML sequence diagram (Fig 4):

Fig. 4 DRMS business model

3.1 DRMS specification

The design that we proposed consists of two parts:

The non functional part of the application which
provides the security constraints[23] to be respected
(needs analysis in terms of cryptographic
techniques(AES, DES, TDES, RSA,…), and in
technological choices (REL: ORDL[24]/MPEG21-
REL[25], [26], [27], OpenSSL, IPSec, VPN) for the
implementation of the DRMS), the objectives and the
advantages of these systems compared to what already
exists on the market in term of quality, speed of
development, modularity, maintainability, portability,
feasibility and most importantly ease of use.

The functional part which is to define the
organizational structure (the scheduling and parallelism
graph) of DRM systems in scenarios which represents
the same application model and describes the order
execution of components. We note that this phase of
specification is made after the second stage of the
design methodology that we will present later.

3.2 Architecture

3.2.1 DRMS Partitioning
Partitioning is an operation charged by different skill
levels (integrators) and having an expertise in
specification, optimization, and integration. Generally the
objective aimed by this phase of conception is to obtain a
homogeneous architecture for low cost and which satisfy
the constraints of execution of the application.

When partitioning, it is to answer the following questions:
 What are the components necessary to establish the

DRM solutions?
 With which technology (software or hardware)

must be used to implement each component?
 Which is the profit (performance, surface, and cost)

obtained after an operation of refinement?
 When we can replace software component by

hardware component and vice versa to handle
performance requirement?

To answer these questions, we have studied the needs,
which must answer a certain criterion that was listed.

3.2.2 Components development
The study of the needs led us to identify three types of
components that we saw necessary to the establishment of
DRMS:
 User components.
 Content server components.
 License server components.

Table 1: Components list
Components Description

User

1 browser

2 DRM Reader (media player, Adobe reader,…)

Content server

3 Web application

4 Database(MS SQL, MySql, Oracle, Postgre,…)

5 Smart adapter

6 Key generator

7 Content encryption

License server

8 License server

9 License generator

10 Encryption license

Concerning the choice of implementations of components
either in software or in hardware [28], [29], we held in
account the following criteria: the cost in execution time,
the type of treatment (management, calculation), the
security level, surface (FPGA/SOC/ASIC) or energy
consumption. However, we propose the hardware
implementation for the component of encoding and
authentication of the data based on the IPSec protocol,
because it requires an important allocation of the processor
because of the complex nature of the calculations made by

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 2, March 2010
www.IJCSI.org

6

these operations, in order to offer both a low cost in
execution time and a higher level of security.

3.3 Components Integration

It is the last phase of the design methodology, which is
consists in assembling the components software-software,
software-software/hardware or even software-hardware in
order to realize a usable system. For the example of the
implementation of DRMS, this phase can be summarized
in two parts:

3.3.1 Scheduling and parallelism graph
The scheduling and parallelism graph [13], [14] (Fig 5)

is a directed graph which represents several possible
scenarios of development, so that every scenario
represents the same model application and describes the
order of execution of components. It includes the
connectors of scheduling and parallelisms or one of them
to establish indirect connections between components. The
main activities ensured by these connectors are [3]: the
Sequence, the parallelism, the exclusive choice and the
synchronization.

The scheduling and parallelism graph represent all
structures SPG of the form SPG= (FSC, L, 1,
C0, F) where:

 FSC: Finite set of components.
 L= SC PC where SC: scheduling connectors

set, PC: parallelism connectors set.
 1: EC×L f(EC) where f(EC) is the parties set

of FSC.
 C0 FSC: Initial component.
 F FSC: Set of final components.

Several formal techniques can be used to model and
validate the GOP: algebras of process, LOTOS or
automats, but the technique of modeling which seems
particularly suitable to model the GOP is the diagrams of
Activity of UML2 [6] because it makes it possible to
describe in the form of graph, the sequence of activities
and the behavior of the system or its components.

//

//

//

Fig. 5 Schedulling and parallelism graph of DRMS business model

3.3.2 Interaction graph
It is a complementary graph [13], [14] to the scheduling

and parallelism graph, its role is to ensure the transfer of
data between heterogeneous components
(interoperability), this operation is loaded by another type
of connector called interaction connector.

The change of the data between the components is made
on the level its interfaces, of which if a component
(Customer) in an application needs during his execution of
a result of another component (supplier), it is necessary to
connect the output interface of this last with the input
interface of the component (Customer). Of course, it
would be necessary to verify that any pair of components
to be assembled is compatible of various points of view:
syntactic, and interactional.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 2, March 2010
www.IJCSI.org

7

The interaction graph reprint all structures IG of the
form IG= (FSC, IC, 2) where:

 FSC: Finite set of components.
 IC: set of interaction connectors.
 2: FSC × COS × IC 7f (FSC × CIS).
 COS : Component outputs set.
 CIS : Component inputs set.

4. Conclusion

In this article we have presented a unified framework to
design software components and hardware components for
DRMS systems called F4MS (Framework For Design
Mixed Systems). This co-design framework permit to
design, develop a high performance, flexible, reuse,
maintainable DRM systems with less cost time to deal
with rapid growing DRM market.

References
[1] M. Rafi, M. Eleuldj: Digital Right Management. The 7th

International Conference on New Technologies of Distributed
Systems NOTERE'07, Marrakesh (2007).

[2] M. Rafi, M.Eleuldj and Z. Guennoun: Digital Rights
Management Adaptable Architecture. The 3rd International
Conference on Information and Communication Technologies:
from Theory to Applications ICTTA'08, Damascus (2008).

[3] M. Rafi, M. Eleuldj and O. Diouri: Digital Rights Management-
A developpement of media player. Scientific Research Outlook
and Technology Developpement in the Arab World (SRO5),
Conference of Information and Communication Technologies,
Fez (2008).

[4] M. Rafi, M. Eleuldj: Les jetons dans les DRM. 2ème JOurnées
Scientifiques en Technologies de l'Information et de la
Communication JOSTIC'08, Rabat (2008).

[5] Reihanah Safavi-Naini, Moti Yung, Digital Rights
Management: Technologies, Issues, Challenges and Systems,
Springer, (2006).

[6] S. Michiels, K. Verslype, W. Joosen, B. De Decker: Towards a
software architecture for DRM. In: Proceedings of the Fifth
ACM Workshop on Digital Rights Management. 5 ACM
Workshop on Digital Rights Management. Alexandria,
Virginia, USA, November 7, pp. 65-74. ACM Press, New
York (2005).

[7] Buyens, K., Michiels, S., Joosen, W.: A software architecture to
facilitate the creation of DRM systems. In: 4th IEEE Consumer
Communications and Networking Conference (CCNC 2007). 4
IEEE Consumer Communications and Networking Conference
- DRM workshop. pp. 955-959. IEEE press, Las Vegas,2007.

[8] Automating Production of Cross Media Content for Multi-
channelDistribution (AXMEDIS), http://www.axmedis.org.

[9] E. Becker,W. Buhse, D. G¨unnewig, and N. Rump, editors.
Digital Rights Management - Technological, Economic, Legal
and Political Aspects, vol. 2770 of Lecture Notes in Computer
Science. Springer, (2003).

[10] L. Chiariglione. Digital Media Project (DMP),
http://www.dmpf.org.

[11] P. A. Jamkhedkar and G. L. Heileman. DRM as a layered
system. InDRM '04: Proceedings of the 4th ACM workshop on
Digital RightsManagement (DRM 2004), pp. 11-21 .ACM
Press, New York (2004).

[12] W. Rosenblatt, W. Trippe, and S. Mooney. Digital Rights
Management:Business and Technology, chapter 5. Hungry
Minds, Inc.(2001).

[13] A. BERRAHOU, Y. RAJI, M. ELEULDJ, VPN solutions using
F4MS framework , The 5th Conference on Scientific Research
Outlook and Technology Development in the Arab World
(SRO5), Fez (2008).

[14] A. BERRAHOU, Y.RAJI, M.RAFI, M. ELEULDJ Framework
For Mixed Systems, The 21th IEEE technically co-sponsored
International Conference on Microelectronics (ISBN: 978-1-
4244-5815-8), Marakech (2009).

[15] A. BERRAHOU, M. ELEULDJ, Plate-forme pour la réalisation
et le déploiement des applications complexes à base de
composants, JICT, the second International Conference on
Science and Technology, Malaga (2007).

[16] G. MARCHIORO, Découpage transformationnel pour la
conception de systèmes mixtes logiciel/Matériel, PhD Thesis,
Institut National Polytechnique de GRENOBLE (1998).

[17] A. TRULLEMANS, M. ANCKAERT, Méthodologie de
validation de systèmes mixtes en environnement réalisé,
UCLLouvain-la-Neuve (2002).

[18] W. Cesario, L. Gauthier, D. Lyonnard, G. Nicolescu and A. A.
Jerraya "Object-based hardware/software component
interconnection model for interface design in system-on-a-chip
circuits", Journal of Systems and Software, Vol.70, Issue 3,
pp.229-244,(2004)

[19] Daniel D. Gajski, Frank Vahid, Sanjiv Narayan and Jie Gong,
"SpecSyn: An Environment Supporting the Specify-Explore-
Refine Paradigm for Hardware/Software System Design",
Readings in Hardware/Software Co-Design, pp.108-124,
(2002).

[20] T. Hollstein and M. Glesner , "Advanced hardware/software co-
design on reconfigurable network-on-chip based hyper-
platforms ", Computers and Electrical Engineering, Vol.33, pp.
310-319. (2007).

[21] C.A. Valderrama, A. Changuel, M. Abid, T. Ben Ismail and
A.A. Jerraya, "A Unified Model for Co-simulation and Co-
synthesis of Mixed Hardware/Software Systems", Readings in
Hardware/Software Co-Design , pp. 579-583. (2002)

[22] W. Fornaciari, P. Gubian, D. Sciuto and C. Silvano ,"Power
Estimation of Embedded Systems: A Hardware/Software
Codesign Approach ", Readings in Hardware/Software Co-
Design , pp. 249-258. (2002)

[23] J.Van Tassel, Digital Rights Management: Protecting and
Monetizing Content, Elsevier, (2006).

[24] ODRL, The Open Digital Rights Language Initiative
http://odrl.net/.

[25] M. Rafi, M.Eleuldj and Z. Guennoun. Improvement of MPEG-
21 Right Expression Language. The 7th ACS/IEEE
International Conference on Computer Systems and
Applications AICCSA'09, Rabat (2009).

[26] Organisation Internationale De Normalisation,
http://www.chiariglione.org/mpeg/standards/mpeg-21/mpeg-
21.htm.

[27] Ian S. Burnett, The MPEG-21 Book, Wiley, (2006).
[28] J. LU, J. LOCKWOOD, IPSec Implementation on Xilinx

Virtex-II Pro FPGA and Its Application, Washington
University, (2005).

[29] N. Nedjah and L. de Macedo Mourelle "Efficient and secure
cryptographic systems based on addition chains: Hardware
design vs. software/hardware co-design", Integration, the VLSI
Journal, Vol. 40, Issue 1, pp 36-44. (2007).

