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Abstract 
Handwriting Recognition enables a person to scribble something 
on a piece of paper and then convert it into text. If we look into 
the practical reality there are enumerable styles in which a 
character may be written. These styles can be self combined to 
generate more styles. Even if a small child knows the basic styles 
a character can be written, he would be able to recognize 
characters written in styles intermediate between them or formed 
by their mixture. This motivates the use of Genetic Algorithms 
for the problem. In order to prove this, we made a pool of images 
of characters. We converted them to graphs. The graph of every 
character was intermixed to generate styles intermediate between 
the styles of parent character. Character recognition involved the 
matching of the graph generated from the unknown character 
image with the graphs generated by mixing. Using this method 
we received an accuracy of 98.44%. 
Keywords: Handwriting recognition; generic algorithms; graph 
theory; coordinate geometry; offline handwriting recognition; 
optical character recognition 

1. Introduction 

Handwriting recognition refers to the identification of 
written characters. The problem can be viewed as a 
classification problem where we need to identify the most 
appropriate character the given figure matches to. Offline 
character recognition refers to the recognition technique 
where the final figure is given to us [Bertolami, 
Zimmermann and Bunke, 2006]. We have no idea of how 
the writer wrote the letter. This is contrary to the online 
character recognition systems where the data can be 
sampled while the character is being written. An example 

of this is writing a character on a touch screen with a 
pointing device. Operating in offline mode gives as input 
the complete picture of character that we need to 
recognize. The complexity of the recognition is usually 
associated with the size of the language being considered. 
If the language contains more number of characters, the 
identification would be much more difficult than the case 
when the language contains lesser number of characters. 
Similarly we need to consider how the various characters 
are written and the differences between the various 
characters. They always have an effect on the performance 
of the handwriting recognition system. 
 
In this paper we propose the use of Genetic Algorithms for 
solving this problem. The basic idea of genetic algorithm 
comes from the fact that it can be used as an excellent 
means of combining various styles of writing a character 
and generating new styles. Closely observing the 
capability of human mind in the recognition of 
handwriting, we find that humans are able to recognize 
characters even though they might be seeing that style for 
the first time. This is possible because of their power to 
visualize parts of the known styles into the unknown 
character. In this paper we try to depict the same power 
into the machines. 
 
In Section 2, we would be discussing the present works 
and the motivation behind the algorithm. In section 3 we 
describe the algorithm and its details. The use of Genetic 
Algorithms is discussed in section 4. In Section 5 we 
discuss about the testing of the algorithm and its results. 
Finally, section 6 we give the conclusion. 
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2. Motivation 

Handwriting recognition has always been a special 
problem. The problem increases when we operate it in the 
offline mode. We see a lot of work has been done in this 
area in the past few years. The solutions being proposed 
mainly use Artificial Neural Networks (ANN) and Hidden 
Markov Models (HMM) for solving the problem. Genetic 
algorithms have not been applied much. They have been 
applied for feature selection optimization [Soryani and 
Rafat, 2006; Shi, Shu and Liu, 1998]. Artificial Neural 
Networks involve training of the system with all the 
characters [Draghici, 1997; Yuelong, Jinping and Li, 2006; 
Som and Saha, 2008; Graves, et. al. 2008]. Then when an 
unknown input is given to the system, the Artificial Neural 
Network is able to find out the most probable character by 
generalization. Hence once trained, the system would be 
ready to recognize the given unknown input. Hidden 
Markov Model is a complete statistical model that tries to 
predict the unknown sequence [Flink and Plotz, 2006; 
Hewavitharana and Fernando, 2002]. Hence it also tries to 
recognize the unknown character which is given as input. 
 
For a system to perform well, it is very important to train it 
well. If the difference between the unknown input and the 
training data is large, the system may not behave well. 
Hence there happens a need of giving a diverse training 
data to the system, depending on what all the system might 
expect in future. Many recognition systems are author 
specific, which means that the difference in ways in which 
the character can be written will not wary much. The 
training data for a good system hence needs to be designed 
very well. On the other hand, if we look at ant character 
from the English language, it can be easily visualized as a 
graph consisting of lines and curves joined to each other. 
There are enumerable ways in which a character can be 
written. E.g. consider writing the letter ‘A, in any of the 
ways given in figure 1. Hence we see that the problem can 
be very easily visualized as a graph matching problem. 
Also, as stated above, we also see the fact that various 
styles of writing can be intermixed to generate new styles. 
This gives us the motivation to use genetic algorithm to 
solve the problem of handwriting recognition. 

 

Figure1: Various styles of writing ‘A’ 

3. Algorithm 

In this section we will take a deep insight into the 
algorithm and its working. We discuss about the 
handwriting recognition general procedure, the 
algorithmic assumptions and its working. We know that 
we are given an unknown character that needs to be 
recognized. For this we have diverse form of training data 
available for each and every character. In this algorithm 
we try to match the input to the training data and the data 
generated from intermixing of training data, to find the 
best match for the given input data. 

3.1 General Procedure 

Handwriting recognition is a famous problem which 
involves the recognition of whatever input is given in form 
of image, scanned paper, etc. The handwriting recognition 
generally involves the following steps [Liwicki and Bunke, 
2007]: 
 Segmentation: This step deals with the breaking of 

the lines, words and finally getting all the characters 
separated. This step involves the identification of the 
boundaries of the character and separating them for 
further processing. In this algorithm we assume that 
this step is already done. Hence the input to our 
system is a single character. 

 Preprocessing: This step involves the initial 
processing of the image, so that it can be used as an 
input for the recognition system. In this algorithm we 
assume that a part of this step has been done. We 
assume that the character segmented is made thin to a 
unit pixel thickness. Various algorithms may be used 
for this purpose. The further processing is done by our 
algorithm. 

 Recognition: Once the input image is available in 
good condition, it may be processed for recognition. 
The role of the recognition system is to identify the 
character. Our algorithm uses an image as an input for 
the same. 

3.2 Procedure 

Once the prerequisites are met, the image input is given to 
the system. This is then recognized by the algorithm. The 
algorithm is as given below. 
 
HandwritingRecognition(Language,TrainingData,Inpu
tImage) 
Step1: For every character c in language 
Step2: For every input i for the character c in test data 
Step3:  Generate Graph gci of i 
Step4: Generate graph t of input image 
Step5: For every character c in language 
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Step6:  Use Genetic Algorithm to generate hybrid 
graphs  
Step7: Return character corresponding to graph with the 
minimum most fitness function (out of the graphs 
generated in any genetic operation) 
 
Seeing the previous algorithm it is clear that we first need 
to generate graphs and then used genetic algorithm to mix 
these graphs and find the most optimal solution (section 
4). 
 
Generation of Graph: This algorithm takes as input an 
image, and returns the graph of the same. The whole 
procedure of the algorithm requires the principles of graph 
theory and coordinate geometry. The algorithm is given in 
figure 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure2: The Graph Generation Algorithm 

Here a graph represents the vertices and the edges. The 
edges are the lines or curves connecting any 2 points. 
Every point where an edge ends/starts is regarded as a 
vertex. We are also interested in knowing the point for 
every line/curve, which is at the maximum distance from 
the start point. This is useful when the graph may contain 
a closed curve E.g. O would be regarded as a curve from a 
vertex that ends at the same vertex. 
 
Each edge must hence represent the start vertex, end 
vertex, shape (line/curve) and the point of maximum 
separation from start vertex. The image expansion is done 
by calculating the expansion factor (final image size/initial 
image size), for both the x and y coordinates. The start and 
end coordinate of each pixel in the new image are then 
measured by multiplying with the expansion factor. The 
lines and curves are differentiated from the maximum and 
minimum angle subtended by the start of the line/curve, a 
point situated γ units further from the start and all points 
2γ units from the start (Refer Fig.3). For a line the 
difference between the maximum and minimum angle 

must be almost 0 degrees. Law of cosines is used for the 
purpose of finding angles. Edges are detected by using a 
similar logic. Figure 4 shows the graph generated when 
the input was J. 
 
 
 
 
 
 
 

Figure3: Difference between curve and line 

 
(a)  (b)        (c)  (d) 

Figure4: Two Ways J was written (a, c) and the generated graph (b, d) 

4. Genetic Algorithm 

Genetic algorithms are a very good means of 
optimizations in such problems. They optimize the desired 
property by generating hybrid solutions from the presently 
existing solutions. These hybrid solutions are added to the 
solution pool and may be used to generate more hybrids. 
These solutions may be better than the solutions already 
generated. All this is done by the genetic operators, which 
are defined and applied over the problem. We already 
have a set of graphs generated from training data for any 
character. The use of genetic algorithm is to mix 2 such 
graphs and to generate new graphs. These newly generated 
graphs may happen to match the character better than the 
existing graphs. Hence genetic algorithms are a good 
means of optimizations. We discuss each of the points in 
detail in the coming sections. 

4.1 Fitness Function 

In Genetic Algorithms, the fitness function is used to test 
the goodness of the solution. This function, when applied 
on any of the solution from the solution pool, tells the 
level of goodness. In our problem, we have used fitness 
function to measure the deviation of the graph of the 
solution, to that of the unknown input. If the two graphs 
are very similar, the deviation would be low and hence the 
value of the fitness function would be low. The lower the 
value of the fitness function, the better would be the 
matching. Hence the graph with the lowest value of fitness 

(x1,y1)

(x γ,y γ) 
(x2γ,y2γ) 

Angle

Expand the image to α x 
α pixel size 

Thin the image to unit 
thickness using any 
thinning algorithm

Walk through every line 
drawn to identify points of 
intersection, lines/curves 
connecting these points 

During the walk, if the 
edge is found, regard its 
end-point as separate 
point 

Note the starting point, ending 
point, point of max dist from 
start and shape (line/curve) for 
figures that connect 2 points. 

If the length of any 
line/curve is < β 
then delete it 
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function would be the most probable answer.  We first 
devise a formula to find the deviation between any two 
edges. This would be then used as a means of finding the 
deviation between two graphs. 
 
4.1.1 Deviation between two edges: For finding out the 
deviation between two edges, we first define a function 
D(e1,e2) that finds the deviation between any edges of a 
graph (e1) with any edge of the other graph (e2). Here an 
edge may represent a line or a curve.  But the start point of 
the edge e1 may match with the start point of the edge of e2 
and the end point of e1 may match with the end point of e2. 
It may also be possible for the converse to be true. The 
start point of e1 may match with the end point of e2 and the 
end point of e1 may match with the start point of e2. This is 
shown in figure 5(a)-(c). Hence we calculate the deviation 
using two separate cases (D1 and D2) and the minimum of 
the two is the actual deviation. D1 represents the case 
where the start vertex of e1 matches with the start vertex of 
e2. The end vertex of e1 matched with the end vertex of e2. 
In general  
 
D1(e1,e2)=square of distance of start points of e1 and e2 + 
square of distance of end points of e1 and e2 
 
If however, e1 is a line and e2 is a curve or vice versa, an 
overhead cost of η is added. If both e1 and e2 are curves, 
and start and end points of e1 are less than β units apart (it 
is almost circle), then we take point of maximum distance 
in place of end points in the above formula. Here point of 
maximum distance is the point in the curve which is at 
maximum distance from the start point of the curve. This 
is shown in Figure 5(a) and Figure 5(b). 
 
 
 
 
 
 
 
 
 
 

Figure 5(a): Calculating D1 with 2 lines 

D2 represents the case where the start vertex of e1 matches 
with the end vertex of e2. The end vertex of e1 matched 
with the start vertex of e2. Similarly we calculate D2(e1,e2) 
by the following formula 
 
D2(e1,e2)=square of distance of start point of e1 and end 
point of e2 + square of distance of end point of e1 and start 
point of e2 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5(b): Calculating D1 with 2 curves 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5(c): Calculating D2 

Other specifications remain same as used in calculating 
D1(e1,e2). This is shown in Figure 5(c). The deviation 
between two edges is calculated by the following formula: 
 
D(e1,e2)=min{D1(e1,e2),D2(e1,e2)} 
 
We even generalize the formula to the condition when 
either e1 or e2 is null. This means that we can find the 
deviation of a line or a curve with nothing. This is a 
feature useful in finding graph deviation when there is 
unequal number of edges in two graphs. In such cases the 
formula is: 
 
D(e1,null) or D(null,e1) = Distance between the starting 
point and end point of line/curve. 
 
If e1 is curve, and start and end points of e1 are less than β 
units apart (it is almost circle), then we take point of 
maximum distance in place of end points in the above 
formula. Here point of maximum distance is the point in 
the curve which is at maximum distance from the start 
point of the curve. Suppose that the edge e1 in first graph 
has start points as (x1s,y1s) and end points as (x1e,y1e). 

(x1s,y1s) 

(x1e,y1e) 

(x2s,y2s) 

(x2e,y2e) 

d 

d 

(x1s,y1s) 

(x2s,y2s) 

(x1m,y1m) 

(x2m,y2m) 

d

d

(x1s,y1s) 

(x1e,y1e) 
(x2e,y2e) 

(x2s,y2s) 
d 

d 
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Similarly suppose that the edge e2 in second graph has 
start points as (x2s,y2s) and end points as (x2e,y2e). The 
point of maximum distance of e1 is (x1m,y1m) and e2 is 
(x2m,y2m). The formula explained above can also be stated 
as: 
 
D1(e1,e2) = (x1s-x2s)

2+(y1s-y2s)
2+(x1e-x2e)

2+(y1e-y2e)
2   if (e1 

is line and e2 is line) or (e1 is curve and e2 is curve and the 
distance between (x1s,y1s) and (x1e,y1e) is less than β units) 
 
D1(e1,e2) = (x1s-x2s)

2+(y1s-y2s)
2+(x1e-x2e)

2+(y1e-y2e)
2 + η if 

(e1 is line and e2 is curve) or (e1 is curve and e2 is line) 
 
D1(e1,e2)= (x1s-x2s)

2+(y1s-y2s)
2+(x1m-x2m)2+(y1m-y2m)2   if  

(e1 is curve and e2 is curve and the distance between 
(x1s,y1s) and (x1e,y1e) is less than β units) 
 
D2(e1,e2) = (x1s-x2e)

2+(y1s-y2e)
2+(x1e-x2s)

2+(y1e-y2s)
2   if (e1 

is line and e2 is line) or (e1 is curve and e2 is curve and the 
distance between (x1s,y1s) and (x1e,y1e) is more than β 
units) 
 
D2(e1,e2) = (x1s-x2e)

2+(y1s-y2e)
2+(x1e-x2s)

2+(y1e-y2s)
2 + η if 

(e1 is line and e2 is curve) or (e1 is curve and e2 is line) 
 
D2(e1,e2)= (x1s-x2m)2+(y1s-y2m)2+(x1m-x2s)

2+(y1m-y2s)
2   if  

(e1 is curve and e2 is curve and the distance between 
(x1s,y1s) and (x1e,y1e) is less than β units) 
 
D(e1,e2)=min{D1(e1,e2),D2(e1,e2)} if both e1 and e2 are not 
null 
 
D(e1,e2)= (x1s-x1e)

2+(y1s-y1e)
2    if e2 is null 

 
D(e1,e2)= (x2s-x2e)

2+(y2s-y2e)
2    if e1 is null 

 
4.1.2 Deviation of a graph: Once we know the deviation 
of an edge with another edge, the deviation of a graph can 
be found out easily. This deviation is found out by pairing 
up of edges and iterating through all the edges. The 
algorithm is as given below. 
 
Deviation(G1,G2) 
Step1: dev ← 0 
Step2: While G1 has no edges or G2 has no edges 
Step3:         Find the edges e1 from first graph and e2 from 
second graph such that deviation between e1 and e2 is the 
minimum for any pair of e1 and e2 
Step4:         Add its deviation to dev 
Step5:         Remove e1 from first graph and e2 from 
second graph 
Step6: For all edges e1 left in first graph 
Step7:          Add deviation of e1 and null to dev 
Step8: For all edges e2 left in second graph 

Step9:          Add deviation of null and e2 to dev 
Step10: Return dev 
 
Here we see that we try to minimize the total deviation. 
For this we select the pair of edges, one from each graph 
such that their deviation is minimal. We keep selecting 
such pairs till one graph gets empty. Hence we keep 
proceeding by keeping the total deviation minimum. In the 
end we add deviation of all the left edges or curves. This 
way we find the minimum deviation between the two 
graphs. 

4.2 Crossover 

Crossover is the operation in genetic algorithms where we 
mix two solutions and form a new solution. This may be 
better than the two existing solutions. The crossover 
operation helps us to generate newer solutions and thus 
helps in optimization. 
 
In this problem we have a graphical representation of the 
solution sets. Each solution is a graph which contains both 
edges and vertices. The crossover operation uses two 
graphs to mix them and forms a new graph. This graph 
takes some characteristics from the first graph and some 
characteristics from the second graph. The graph 
generated from this operation may be better than the 
parent graph and hence useful.  The basic motive of using 
this operation is to mix styles. If the two graphs have 
characters in different styles, we would be able to mix 
them and form a style that is intermediate between the 
parent styles. The crossover operation makes sure that the 
style of writing a particular section of the character is 
taken from one of the graph. This section is removed from 
the other graph and the new section is added. Hence using 
the crossover operation we may be able to mix styles to 
form unique new solutions. Many solutions are possible 
for every combination of parents. In this algorithm, we 
generate all the forms and add it as a solution. Hence one 
crossover operation results in many solutions being 
generated. 
 
The crossover operation in any pair of graphs is always 
carried out between two vertices of the graph. Hence we 
need to find out the pair of points using which the 
crossover needs to be done. We use the first graph as the 
base. We try to find paths that connect these two points. 
We lay down a condition that any point can be visited at 
most once while finding the path. Also the total path 
length must be less than 4 edges. This means we must be 
able to reach the second vertex from the first, using a 
maximum of 3 intermediate distinct vertices. Once such a 
path is found in the first graph, we do a similar work using 
the same points in the second graph as well. If the path is 
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found, we are ready for crossover. The final generated 
solution is same as the first graph. The only difference is 
that we delete the entire path that was found between the 
two chosen points from first graph. We then insert the path 
that was chosen from the second graph between the same 
chosen points. Hence a region of style between the chosen 
points is changed from the old style of first graph to the 
new style of graph two. The style of the remaining 
character remains same as graph one. However a point in 
the first graph may not be the same in the other graph as 
well. For this there happens to be a need for matching the 
points. A point of first graph is tried to match to the 
closest possible point in the second graph. The points that 
fail to match to any other point are added in the end to the 
other graph as well. This means that if a point in graph one 
failed to match any other point in graph two, it would be 
simply added as a vertex in graph two. The following is 
the algorithm used for the crossover of the two graphs 
 
CrossOver(G1,G2) 
Step1: match ← MatchPoints(G1,G2)  (Find points in G1 
corresponding to G2 and vice versa) 
Step2: W1 ← GenerateAdjacency(G1)  (Generates the 
Adjacency Matrix of the Graph) 
Step3: W1 ← GenerateAdjacency(G2) 
Step4: if W1 ≠ W2 
Step5:   FindPaths(W1)  (Finds the paths of all 
lengths between any pair of points) 
Step6:  FindPaths(W2) 
Step7:  p1 ← path between vertices v1 and v2 in 
G1 of length l, for all v1, v2 in W1 and length l= 1 or 2 or 3 
or 4 
Step8:  p2 ← path between vertices match[v1] 
and match[v2] in G2 of length l2=1 or 2 or 3 or 4 
Step9:  If p1 exists and p2 exists and p1 ≠ p2 
Step10:   Remove all edges from W1 that 
are found in p1 
Step11:   Add all edges in W1 that are 
found in p2 
Step12:   g ← MakeGraph(W1,W2)  
(Generate graph out of Adjacency matrix of W1) 
Step13:  Add g to solution set 
Step14               else    g ← MakeGraph(W1,W2) 
Step13:  Add g to solution set 
 
Each of the steps is discussed below in the further sections 
 
4.2.1 Matching of points: First we define the algorithm 
for the matching of points in the two graphs. If a point in 
graph 1 is said to match a point in graph 2, it may be 
assumed that a reference to the point in graph 1 would be 
taken analogous to the reference of the matching point in 
graph 2. Suppose both graph 1 and graph 2 are the 
character I written in two different styles. Suppose the 

point s1 in graph 1 is the leftmost point of the topmost line. 
If we say that this point s1 matches with the point s2 in 
graph 2, then we may assume the point s2 in graph 2 to be 
the leftmost point of the topmost line. This is shown in 
figure 6. The algorithm is as given below. 
 
 
 
 
 
 
 
 
 

Figure 6: The matching of points in 2 graphs 

MatchPoints(G1,G2) 
Step1: ver1← all unique points in first graph which are at 
least β units distance apart from each other 
Step2: ver2← all unique points in second graph which are 
at least β units distance apart from each other 
Step3: match ← null 
Step3: While ver1 is not null or ver2 is not null 
Step4:   match[s2] ← s1 such that s1 is a vertex in 
ver1 and s2 is a vertex in ver2 and distance between s1 and 
s2 is least for any combination of vertices in ver1 and ver2 
and distance between s1 and s2 is less than 2β units 
Step5:  Remove s1 from ver1 
Step6:  Remove s2 from ver2 
Step7: For all vertex v in ver1 
Step8:  match[v] ← v 
Step9: For all vertex v in ver2 
Step10:  match[v] ← v 
 
4.2.2 Generate Adjacency Matrix: Once the points have 
been identified and matched, the next step is to generate 
the graph. We use the adjacency matrix way of graph 
representation for this problem. We know that since this is 
a non-directional graph, the path from a node x to a node y 
would also imply the path from the node y to the node x. 
This means the final adjacency matrix (W) would be 
symmetric. Further, we know that any two points can be 
simultaneously connected by a curve and/or a line. Hence 
we use the following convention for the representation of 
a cell Wij in the adjacency matrix for any pair of vertices i 
and j. 
 
Wij = 0 (If the node i is not directly connected by the node 
j) 
Wij = 1 (If the node i is directly connected by the node j by 
only 1 line) 
Wij = 2 (If the node i is directly connected by the node j by 
only 1 curve) 

S2

S1
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Wij = 3 (If the node i is directly connected by the node j by 
only 1 line and 1 curve) 
 
All other states are invalid. The algorithm for the 
generation of the adjacency matrix is given below. 
 
Generate Adjacency(G) 
Step1: W ←0 
Step2: For all edges e in graph joining points i and j 
Step3:  Wij ← Wij+1 (if e is a line) 
Step4:  Wij ← Wij+2 (if e is a curve) 
Step5:  Wji ← Wij 

Step6: Return W 
 
4.2.3 Find Paths: Once we have generated the adjacency 
matrix, the next step is to find the paths of all lengths 
between all pairs of points. This would be required in the 
working of the algorithm. The data generated by this step 
becomes a straight input for the further step. We use the 
concept of dynamic programming to solve this problem. 
 
We know that we have a graph. This consists of a number 
of vertices. For this problem we restrict ourselves to paths 
which are of a maximum length of 4. Hence the problem is 
to find the existence of a path p, from a vertex i to a vertex 
j of a distance of exactly l. Here i and j can take any values 
and l is 1, 2, 3 or 4. We define a variable F(i,j,l) that stores 
the existence of the path. It stores the last vertex traversed 
while travelling from i to j using path of length l. If such a 
path is not possible, it stores null  
 
We also know that for single length (i=1), path is only 
possible if there is a direct edge between the vertex i and 
vertex j. Hence 
 
F(i,j,l) is defined as follows 
 
F(i,j,0)=i, if edge (i,j) exists or edge (j,i) exists 
F(i,j,0)=null, otherwise 
And  
F(i,j,l)= null, if there is no path possible of length l (l ≠ 0) 
between vertex i and vertex j. 
F(i,j,l)= k, if there is a path possible of length (l-1) 
between vertex i and vertex k and j is directly connected to 
j(l≠0) 
 
This can also be written as 
F(i,j,l)= k, if F(i,k,l-1) exists and (vertex (k,j) exists or 
vertex (j,k) exists), l ≠ 0 
F(i,j,l)= null, otherwise 
 
Hence using this relation we can find whether the path of 
length l exists between nodes i and j. If it exists, the value 
of F(i,j,l) is not null. If the path exists, we can find the 

path by reverse iterating the value of F(i,j,t) by varying t 
from l to 0. This way we would be able to find the exact 
path that joins the two vertices. 
 
However while executing the algorithm we need to take 
care of the following points: 
 
 Any vertex can occur maximum once in any path. 

Hence before making any selection of k in the above 
formula of F(i,j,l), we need to make sure that we do 
not include a point twice in the entire path from i to j. 

 It is possible for various values of k to satisfy the 
above formula of F(i,j,l). In such a situation, we first 
find out all such possible values of k and then select 
any one randomly. 

 
4.2.4 Removing and adding edges: As mentioned in the 
above algorithm of crossover, we apply the above data to 
find paths in first and second graph between any two 
points. If both the paths are found, we remove the edges of 
first path and add the edges of the second path from G1. In 
such a manner we are able to mix two distinct graphs and 
generate a new graph.  
 
However there may be various possibilities in the addition 
or removal. While removing an edge from vertex i to a 
vertex j in the graph, we take care of the following 
conditions, to maintain the consistency of the graph 
 
If Wij=0, or in other words there exists no edge from i to j, 
we break the operation 
If Wij=1 or in other words there exists a line from i to j, we 
remove the line 
If Wij=2 or in other words there exists a curve from i to j, 
we remove the curve 
If Wij=3 or in other words there exists a curve and a line 
from i to j, we remove any one of them randomly choosing 
Wij>3 is an illegal state and the operation is broken 
 
After the operation Wij is made equal to Wji 
 
Here Wij refers to the adjacency matrix of graph 1 on 
which the removal operation is applied. Here we have 
taken care that after the operation is over, Wij should be 
between 0 and 3, which are the only legal values it can 
take. 
 
Similarly while adding an edge from vertex i to a vertex j 
in the graph, we take care that after the operation, Wij 
should be between 0 and 3, and Wij should be equal to Wji. 
 
Intermixing of graphs may generate a lot many impossible 
graphs. By proper checking and breaking operations, we 
save the solution set from getting wrong data. 
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4.2.5 Generation of graph: The last step is to convert the 
graphs in form of Adjacency Matrix into graphs in form of 
edges list. Here we need to take care of another kind of 
optimization. This is the distance optimization of the 
algorithm. As explained above, in the algorithm we found 
out the matching vertices between the two graphs. In this 
method, we matched a vertex of first graph to the closest 
one of the second graph and vice versa. The purpose of 
this matching was to say that matching vertices are 
analogous to each other across the two graphs. Hence we 
said that if a vertex s1 in first graph matches with a vertex 
s2 in second graph, this means that the role of s1 in first 
graph is played by s2 in second graph. 
 
But we need to realize that the fitness function works on 
the separation between the vertices. While reforming the 
graph in this step, we would be free to take the vertices of 
first graph as the final vertices of the mixed graph. We 
may also take the matching vertices of the second graph in 
place of those of the first graph. But since we have already 
calculated the fitness function value using the parents, 
using any of these methods only gives us the benefit of 
style optimizations. If the vertices of the unknown input 
lie in between those of the parents, these methods would 
not serve very useful. 
 
In pace of taking vertices from any one of the graph, we 
take the mean of the matching vertices of the two graphs. 
This optimizes the distance as well, along with the style. It 
may be noted that in case the two graphs match in style, 
which is the case most number of times, the distance 
optimization proves very useful in optimizations. The 
algorithm for the formation of graph is given below 
 
GenerateGraph(W) 
Step1: for all vertex i W 
Step2  for all vertex j in W that come after or at i 
Step3:   if Wij > 2 
Step4:    add a curve from x to y 
Step5:    Wij ← Wij - 2 
Step6:   if Wij =1 
Step7:    add a line from x to y 
 
 
Here x=mean of vertices i in first graph and the 
corresponding matching vertex of i in second graph 
(vertex k such that match[k] ← i) 
 
y=mean of vertices j in first graph and the corresponding 
matching vertex of j in second graph (vertex k such that 
match[k] ← i) 

5. Results 

In order to check the working of the algorithm, we coded 
the algorithm. Java was used as a language. Input was 
given in the form of images. Test data was also stored in 
the form of images. We applied the algorithm over the 
capital letters of English language. The language contains 
26 characters. In order to make the database, we first 
wrote each letter twice. The first time the letter was 
written perfectly, like the way we are taught. The second 
time we used a raw hand to introduce some imperfection. 
Letters like A had some types of style associated with 
them. We hence, wrote these letters more times as per 
requirements. The input data set was made by writing each 
character enumerable number of times, using different 
ways. The motion of the hand was shaken while writing, 
to introduce some unknown imperfections in the test data. 
The algorithm was made to first process the training data. 
Then it was made to run on the test data by iterating 
through the test data one after the other.  We used a total 
of 69 characters as the training data. The test data was a 
collection of 385 inputs. When the algorithm was made to 
run, it correctly identified 379 characters. It wrongly 
identified 6 test cases. This gave the efficiency of 98.44%. 
 
This problem could have been solved with the absence of 
Genetic Algorithms as well. In order to see the importance 
of Genetic Algorithms in the problem, we tested the data 
in the absence of the application of genetic algorithms. We 
found that the genetic algorithms were useful in the 
following manner 

5.1 Distance Optimization 

The character that is input for identification may have the 
vertices of its graph at a point quite far from that of the 
training data. Actually language allows us to end the 
various lines over a large distance. This depends on the 
writer and his writing style. But when we would compare 
the closeness of such an input, it is clear that the 
differences would be large. On the other hand 
identification by a human of the same character would be 
very easy.  Such a problem was highlighted when we tried 
to recognize the character M without Genetic Algorithm. 
The input given is shown in Figure 7(a). As it can be seen 
in this figure, the two slanting lines of M are quite medium 
in size and little near. This was not true in any of the 
training data. The characteristic of the training data was 
that one contained the entire M distributed normally. This 
made the slanting lines quite big. Another one was written 
in a quick jerk to the middle section, making the section 
quite short. This is shown in figure 7(b) and (c). When the 
algorithm was made to run, it happened to match with the 
character X. But on applying genetic algorithms, the 
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distance got optimized, and the character was identified 
correctly. 

5.2 Style Optimization 

We have already discussed that the algorithm is very 
efficient in mixing two styles and generating a mixture of 
styles. This property of the algorithm to generate newer 
and newer styles proves very useful in the working of the 
algorithm.  In the training data set, we had given two 
distinct Bs in the training data of B. When operated 
without genetic algorithms, these two failed to match with 
the input of the data. On the contrary the best matching 
was found out to be with the letter S with a high deviation. 
But when the same was done with genetic Algorithms, the 
B matched correctly. Figure 8 shows the graphs of input, 
the training data and one of the genetically produced 
results. Here the top curve of first training data was added 
to the second training data’s top set of lines. The genetic 
algorithm was applied across the vertical top line. 

 
(a) Input (b) Training data1 (c) Training 

Figure 7: Input wrongly identified without GA 

 
(a) Input, (b) Training1, (c) Training2, (d) Genetic Mixture of 1 & 2 

Figure 8: Input identified wrong without genetic algorithm 

6. Conclusions 

In this paper we proposed the use of genetic algorithm and 
graph theory for solving the problem of offline 
handwriting recognition. We had given the input in the 
form of images. The algorithm was trained on the training 
data that was initially present in the database. The training 
data consisted of at least two training data sets per 
character in the language. We used the graph theory and 
coordinate geometry to convert the images to graphs. We 
saw that these conversions changed the whole problem of 
handwriting recognition to the problem of graph matching. 
When a pure graph matching was done, sufficiently fine 
results were obtained. The algorithm could recognize 
unknown characters given as input. But the efficiency 
improved drastically when we applied genetic algorithms. 
This algorithm helped in both style optimization and 
distance optimization. In style optimization, it helped us to 
mix two different styles to generate a new one that was in 

between the two. This was done by mixing two graphs 
across two points. We saw how it helped in identification 
of character B. We also saw how the algorithm helped in 
distance optimization. It transformed the start and end 
point of vertices in such a way that it could match better 
with the unknown data input. This was done by taking 
mean coordinates of the vertices of parents. We saw how 
it helped in identification of letter M. In all we got an 
efficiency of 98.44%, which proves that this algorithm 
works for most of the cases and correctly matched the 
unknown input to their character. 
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