
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 1, March 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

16

Offline Handwriting Recognition using Genetic Algorithm

Rahul KALA1, Harsh VAZIRANI2, Anupam SHUKLA3 and Ritu TIWARI4

 1 Soft Computing and Expert System Laboratory, Indian Institute of Information Technology and Management Gwalior,
Gwalior, Madhya Pradesh-474010, India

2 Soft Computing and Expert System Laboratory, Indian Institute of Information Technology and Management Gwalior,
Gwalior, Madhya Pradesh-474010, India

3 Soft Computing and Expert System Laboratory, Indian Institute of Information Technology and Management Gwalior,
Gwalior, Madhya Pradesh-474010, India

4 Soft Computing and Expert System Laboratory, Indian Institute of Information Technology and Management Gwalior,
Gwalior, Madhya Pradesh-474010, India

Abstract
Handwriting Recognition enables a person to scribble something
on a piece of paper and then convert it into text. If we look into
the practical reality there are enumerable styles in which a
character may be written. These styles can be self combined to
generate more styles. Even if a small child knows the basic styles
a character can be written, he would be able to recognize
characters written in styles intermediate between them or formed
by their mixture. This motivates the use of Genetic Algorithms
for the problem. In order to prove this, we made a pool of images
of characters. We converted them to graphs. The graph of every
character was intermixed to generate styles intermediate between
the styles of parent character. Character recognition involved the
matching of the graph generated from the unknown character
image with the graphs generated by mixing. Using this method
we received an accuracy of 98.44%.
Keywords: Handwriting recognition; generic algorithms; graph
theory; coordinate geometry; offline handwriting recognition;
optical character recognition

1. Introduction

Handwriting recognition refers to the identification of
written characters. The problem can be viewed as a
classification problem where we need to identify the most
appropriate character the given figure matches to. Offline
character recognition refers to the recognition technique
where the final figure is given to us [Bertolami,
Zimmermann and Bunke, 2006]. We have no idea of how
the writer wrote the letter. This is contrary to the online
character recognition systems where the data can be
sampled while the character is being written. An example

of this is writing a character on a touch screen with a
pointing device. Operating in offline mode gives as input
the complete picture of character that we need to
recognize. The complexity of the recognition is usually
associated with the size of the language being considered.
If the language contains more number of characters, the
identification would be much more difficult than the case
when the language contains lesser number of characters.
Similarly we need to consider how the various characters
are written and the differences between the various
characters. They always have an effect on the performance
of the handwriting recognition system.

In this paper we propose the use of Genetic Algorithms for
solving this problem. The basic idea of genetic algorithm
comes from the fact that it can be used as an excellent
means of combining various styles of writing a character
and generating new styles. Closely observing the
capability of human mind in the recognition of
handwriting, we find that humans are able to recognize
characters even though they might be seeing that style for
the first time. This is possible because of their power to
visualize parts of the known styles into the unknown
character. In this paper we try to depict the same power
into the machines.

In Section 2, we would be discussing the present works
and the motivation behind the algorithm. In section 3 we
describe the algorithm and its details. The use of Genetic
Algorithms is discussed in section 4. In Section 5 we
discuss about the testing of the algorithm and its results.
Finally, section 6 we give the conclusion.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 1, March 2010
www.IJCSI.org

17

2. Motivation

Handwriting recognition has always been a special
problem. The problem increases when we operate it in the
offline mode. We see a lot of work has been done in this
area in the past few years. The solutions being proposed
mainly use Artificial Neural Networks (ANN) and Hidden
Markov Models (HMM) for solving the problem. Genetic
algorithms have not been applied much. They have been
applied for feature selection optimization [Soryani and
Rafat, 2006; Shi, Shu and Liu, 1998]. Artificial Neural
Networks involve training of the system with all the
characters [Draghici, 1997; Yuelong, Jinping and Li, 2006;
Som and Saha, 2008; Graves, et. al. 2008]. Then when an
unknown input is given to the system, the Artificial Neural
Network is able to find out the most probable character by
generalization. Hence once trained, the system would be
ready to recognize the given unknown input. Hidden
Markov Model is a complete statistical model that tries to
predict the unknown sequence [Flink and Plotz, 2006;
Hewavitharana and Fernando, 2002]. Hence it also tries to
recognize the unknown character which is given as input.

For a system to perform well, it is very important to train it
well. If the difference between the unknown input and the
training data is large, the system may not behave well.
Hence there happens a need of giving a diverse training
data to the system, depending on what all the system might
expect in future. Many recognition systems are author
specific, which means that the difference in ways in which
the character can be written will not wary much. The
training data for a good system hence needs to be designed
very well. On the other hand, if we look at ant character
from the English language, it can be easily visualized as a
graph consisting of lines and curves joined to each other.
There are enumerable ways in which a character can be
written. E.g. consider writing the letter ‘A, in any of the
ways given in figure 1. Hence we see that the problem can
be very easily visualized as a graph matching problem.
Also, as stated above, we also see the fact that various
styles of writing can be intermixed to generate new styles.
This gives us the motivation to use genetic algorithm to
solve the problem of handwriting recognition.

Figure1: Various styles of writing ‘A’

3. Algorithm

In this section we will take a deep insight into the
algorithm and its working. We discuss about the
handwriting recognition general procedure, the
algorithmic assumptions and its working. We know that
we are given an unknown character that needs to be
recognized. For this we have diverse form of training data
available for each and every character. In this algorithm
we try to match the input to the training data and the data
generated from intermixing of training data, to find the
best match for the given input data.

3.1 General Procedure

Handwriting recognition is a famous problem which
involves the recognition of whatever input is given in form
of image, scanned paper, etc. The handwriting recognition
generally involves the following steps [Liwicki and Bunke,
2007]:
 Segmentation: This step deals with the breaking of

the lines, words and finally getting all the characters
separated. This step involves the identification of the
boundaries of the character and separating them for
further processing. In this algorithm we assume that
this step is already done. Hence the input to our
system is a single character.

 Preprocessing: This step involves the initial
processing of the image, so that it can be used as an
input for the recognition system. In this algorithm we
assume that a part of this step has been done. We
assume that the character segmented is made thin to a
unit pixel thickness. Various algorithms may be used
for this purpose. The further processing is done by our
algorithm.

 Recognition: Once the input image is available in
good condition, it may be processed for recognition.
The role of the recognition system is to identify the
character. Our algorithm uses an image as an input for
the same.

3.2 Procedure

Once the prerequisites are met, the image input is given to
the system. This is then recognized by the algorithm. The
algorithm is as given below.

HandwritingRecognition(Language,TrainingData,Inpu
tImage)
Step1: For every character c in language
Step2: For every input i for the character c in test data
Step3: Generate Graph gci of i
Step4: Generate graph t of input image
Step5: For every character c in language

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 1, March 2010
www.IJCSI.org

18

Step6: Use Genetic Algorithm to generate hybrid
graphs
Step7: Return character corresponding to graph with the
minimum most fitness function (out of the graphs
generated in any genetic operation)

Seeing the previous algorithm it is clear that we first need
to generate graphs and then used genetic algorithm to mix
these graphs and find the most optimal solution (section
4).

Generation of Graph: This algorithm takes as input an
image, and returns the graph of the same. The whole
procedure of the algorithm requires the principles of graph
theory and coordinate geometry. The algorithm is given in
figure 2.

Figure2: The Graph Generation Algorithm

Here a graph represents the vertices and the edges. The
edges are the lines or curves connecting any 2 points.
Every point where an edge ends/starts is regarded as a
vertex. We are also interested in knowing the point for
every line/curve, which is at the maximum distance from
the start point. This is useful when the graph may contain
a closed curve E.g. O would be regarded as a curve from a
vertex that ends at the same vertex.

Each edge must hence represent the start vertex, end
vertex, shape (line/curve) and the point of maximum
separation from start vertex. The image expansion is done
by calculating the expansion factor (final image size/initial
image size), for both the x and y coordinates. The start and
end coordinate of each pixel in the new image are then
measured by multiplying with the expansion factor. The
lines and curves are differentiated from the maximum and
minimum angle subtended by the start of the line/curve, a
point situated γ units further from the start and all points
2γ units from the start (Refer Fig.3). For a line the
difference between the maximum and minimum angle

must be almost 0 degrees. Law of cosines is used for the
purpose of finding angles. Edges are detected by using a
similar logic. Figure 4 shows the graph generated when
the input was J.

Figure3: Difference between curve and line

(a) (b) (c) (d)

Figure4: Two Ways J was written (a, c) and the generated graph (b, d)

4. Genetic Algorithm

Genetic algorithms are a very good means of
optimizations in such problems. They optimize the desired
property by generating hybrid solutions from the presently
existing solutions. These hybrid solutions are added to the
solution pool and may be used to generate more hybrids.
These solutions may be better than the solutions already
generated. All this is done by the genetic operators, which
are defined and applied over the problem. We already
have a set of graphs generated from training data for any
character. The use of genetic algorithm is to mix 2 such
graphs and to generate new graphs. These newly generated
graphs may happen to match the character better than the
existing graphs. Hence genetic algorithms are a good
means of optimizations. We discuss each of the points in
detail in the coming sections.

4.1 Fitness Function

In Genetic Algorithms, the fitness function is used to test
the goodness of the solution. This function, when applied
on any of the solution from the solution pool, tells the
level of goodness. In our problem, we have used fitness
function to measure the deviation of the graph of the
solution, to that of the unknown input. If the two graphs
are very similar, the deviation would be low and hence the
value of the fitness function would be low. The lower the
value of the fitness function, the better would be the
matching. Hence the graph with the lowest value of fitness

(x1,y1)

(x γ,y γ)
(x2γ,y2γ)

Angle

Expand the image to α x
α pixel size

Thin the image to unit
thickness using any
thinning algorithm

Walk through every line
drawn to identify points of
intersection, lines/curves
connecting these points

During the walk, if the
edge is found, regard its
end-point as separate
point

Note the starting point, ending
point, point of max dist from
start and shape (line/curve) for
figures that connect 2 points.

If the length of any
line/curve is < β
then delete it

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 1, March 2010
www.IJCSI.org

19

function would be the most probable answer. We first
devise a formula to find the deviation between any two
edges. This would be then used as a means of finding the
deviation between two graphs.

4.1.1 Deviation between two edges: For finding out the
deviation between two edges, we first define a function
D(e1,e2) that finds the deviation between any edges of a
graph (e1) with any edge of the other graph (e2). Here an
edge may represent a line or a curve. But the start point of
the edge e1 may match with the start point of the edge of e2
and the end point of e1 may match with the end point of e2.
It may also be possible for the converse to be true. The
start point of e1 may match with the end point of e2 and the
end point of e1 may match with the start point of e2. This is
shown in figure 5(a)-(c). Hence we calculate the deviation
using two separate cases (D1 and D2) and the minimum of
the two is the actual deviation. D1 represents the case
where the start vertex of e1 matches with the start vertex of
e2. The end vertex of e1 matched with the end vertex of e2.
In general

D1(e1,e2)=square of distance of start points of e1 and e2 +
square of distance of end points of e1 and e2

If however, e1 is a line and e2 is a curve or vice versa, an
overhead cost of η is added. If both e1 and e2 are curves,
and start and end points of e1 are less than β units apart (it
is almost circle), then we take point of maximum distance
in place of end points in the above formula. Here point of
maximum distance is the point in the curve which is at
maximum distance from the start point of the curve. This
is shown in Figure 5(a) and Figure 5(b).

Figure 5(a): Calculating D1 with 2 lines

D2 represents the case where the start vertex of e1 matches
with the end vertex of e2. The end vertex of e1 matched
with the start vertex of e2. Similarly we calculate D2(e1,e2)
by the following formula

D2(e1,e2)=square of distance of start point of e1 and end
point of e2 + square of distance of end point of e1 and start
point of e2

Figure 5(b): Calculating D1 with 2 curves

Figure 5(c): Calculating D2

Other specifications remain same as used in calculating
D1(e1,e2). This is shown in Figure 5(c). The deviation
between two edges is calculated by the following formula:

D(e1,e2)=min{D1(e1,e2),D2(e1,e2)}

We even generalize the formula to the condition when
either e1 or e2 is null. This means that we can find the
deviation of a line or a curve with nothing. This is a
feature useful in finding graph deviation when there is
unequal number of edges in two graphs. In such cases the
formula is:

D(e1,null) or D(null,e1) = Distance between the starting
point and end point of line/curve.

If e1 is curve, and start and end points of e1 are less than β
units apart (it is almost circle), then we take point of
maximum distance in place of end points in the above
formula. Here point of maximum distance is the point in
the curve which is at maximum distance from the start
point of the curve. Suppose that the edge e1 in first graph
has start points as (x1s,y1s) and end points as (x1e,y1e).

(x1s,y1s)

(x1e,y1e)

(x2s,y2s)

(x2e,y2e)

d

d

(x1s,y1s)

(x2s,y2s)

(x1m,y1m)

(x2m,y2m)

d

d

(x1s,y1s)

(x1e,y1e)
(x2e,y2e)

(x2s,y2s)
d

d

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 1, March 2010
www.IJCSI.org

20

Similarly suppose that the edge e2 in second graph has
start points as (x2s,y2s) and end points as (x2e,y2e). The
point of maximum distance of e1 is (x1m,y1m) and e2 is
(x2m,y2m). The formula explained above can also be stated
as:

D1(e1,e2) = (x1s-x2s)

2+(y1s-y2s)
2+(x1e-x2e)

2+(y1e-y2e)
2 if (e1

is line and e2 is line) or (e1 is curve and e2 is curve and the
distance between (x1s,y1s) and (x1e,y1e) is less than β units)

D1(e1,e2) = (x1s-x2s)

2+(y1s-y2s)
2+(x1e-x2e)

2+(y1e-y2e)
2 + η if

(e1 is line and e2 is curve) or (e1 is curve and e2 is line)

D1(e1,e2)= (x1s-x2s)

2+(y1s-y2s)
2+(x1m-x2m)2+(y1m-y2m)2 if

(e1 is curve and e2 is curve and the distance between
(x1s,y1s) and (x1e,y1e) is less than β units)

D2(e1,e2) = (x1s-x2e)

2+(y1s-y2e)
2+(x1e-x2s)

2+(y1e-y2s)
2 if (e1

is line and e2 is line) or (e1 is curve and e2 is curve and the
distance between (x1s,y1s) and (x1e,y1e) is more than β
units)

D2(e1,e2) = (x1s-x2e)

2+(y1s-y2e)
2+(x1e-x2s)

2+(y1e-y2s)
2 + η if

(e1 is line and e2 is curve) or (e1 is curve and e2 is line)

D2(e1,e2)= (x1s-x2m)2+(y1s-y2m)2+(x1m-x2s)

2+(y1m-y2s)
2 if

(e1 is curve and e2 is curve and the distance between
(x1s,y1s) and (x1e,y1e) is less than β units)

D(e1,e2)=min{D1(e1,e2),D2(e1,e2)} if both e1 and e2 are not
null

D(e1,e2)= (x1s-x1e)

2+(y1s-y1e)
2 if e2 is null

D(e1,e2)= (x2s-x2e)

2+(y2s-y2e)
2 if e1 is null

4.1.2 Deviation of a graph: Once we know the deviation
of an edge with another edge, the deviation of a graph can
be found out easily. This deviation is found out by pairing
up of edges and iterating through all the edges. The
algorithm is as given below.

Deviation(G1,G2)
Step1: dev ← 0
Step2: While G1 has no edges or G2 has no edges
Step3: Find the edges e1 from first graph and e2 from
second graph such that deviation between e1 and e2 is the
minimum for any pair of e1 and e2
Step4: Add its deviation to dev
Step5: Remove e1 from first graph and e2 from
second graph
Step6: For all edges e1 left in first graph
Step7: Add deviation of e1 and null to dev
Step8: For all edges e2 left in second graph

Step9: Add deviation of null and e2 to dev
Step10: Return dev

Here we see that we try to minimize the total deviation.
For this we select the pair of edges, one from each graph
such that their deviation is minimal. We keep selecting
such pairs till one graph gets empty. Hence we keep
proceeding by keeping the total deviation minimum. In the
end we add deviation of all the left edges or curves. This
way we find the minimum deviation between the two
graphs.

4.2 Crossover

Crossover is the operation in genetic algorithms where we
mix two solutions and form a new solution. This may be
better than the two existing solutions. The crossover
operation helps us to generate newer solutions and thus
helps in optimization.

In this problem we have a graphical representation of the
solution sets. Each solution is a graph which contains both
edges and vertices. The crossover operation uses two
graphs to mix them and forms a new graph. This graph
takes some characteristics from the first graph and some
characteristics from the second graph. The graph
generated from this operation may be better than the
parent graph and hence useful. The basic motive of using
this operation is to mix styles. If the two graphs have
characters in different styles, we would be able to mix
them and form a style that is intermediate between the
parent styles. The crossover operation makes sure that the
style of writing a particular section of the character is
taken from one of the graph. This section is removed from
the other graph and the new section is added. Hence using
the crossover operation we may be able to mix styles to
form unique new solutions. Many solutions are possible
for every combination of parents. In this algorithm, we
generate all the forms and add it as a solution. Hence one
crossover operation results in many solutions being
generated.

The crossover operation in any pair of graphs is always
carried out between two vertices of the graph. Hence we
need to find out the pair of points using which the
crossover needs to be done. We use the first graph as the
base. We try to find paths that connect these two points.
We lay down a condition that any point can be visited at
most once while finding the path. Also the total path
length must be less than 4 edges. This means we must be
able to reach the second vertex from the first, using a
maximum of 3 intermediate distinct vertices. Once such a
path is found in the first graph, we do a similar work using
the same points in the second graph as well. If the path is

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 1, March 2010
www.IJCSI.org

21

found, we are ready for crossover. The final generated
solution is same as the first graph. The only difference is
that we delete the entire path that was found between the
two chosen points from first graph. We then insert the path
that was chosen from the second graph between the same
chosen points. Hence a region of style between the chosen
points is changed from the old style of first graph to the
new style of graph two. The style of the remaining
character remains same as graph one. However a point in
the first graph may not be the same in the other graph as
well. For this there happens to be a need for matching the
points. A point of first graph is tried to match to the
closest possible point in the second graph. The points that
fail to match to any other point are added in the end to the
other graph as well. This means that if a point in graph one
failed to match any other point in graph two, it would be
simply added as a vertex in graph two. The following is
the algorithm used for the crossover of the two graphs

CrossOver(G1,G2)
Step1: match ← MatchPoints(G1,G2) (Find points in G1
corresponding to G2 and vice versa)
Step2: W1 ← GenerateAdjacency(G1) (Generates the
Adjacency Matrix of the Graph)
Step3: W1 ← GenerateAdjacency(G2)
Step4: if W1 ≠ W2
Step5: FindPaths(W1) (Finds the paths of all
lengths between any pair of points)
Step6: FindPaths(W2)
Step7: p1 ← path between vertices v1 and v2 in
G1 of length l, for all v1, v2 in W1 and length l= 1 or 2 or 3
or 4
Step8: p2 ← path between vertices match[v1]
and match[v2] in G2 of length l2=1 or 2 or 3 or 4
Step9: If p1 exists and p2 exists and p1 ≠ p2
Step10: Remove all edges from W1 that
are found in p1
Step11: Add all edges in W1 that are
found in p2
Step12: g ← MakeGraph(W1,W2)
(Generate graph out of Adjacency matrix of W1)
Step13: Add g to solution set
Step14 else g ← MakeGraph(W1,W2)
Step13: Add g to solution set

Each of the steps is discussed below in the further sections

4.2.1 Matching of points: First we define the algorithm
for the matching of points in the two graphs. If a point in
graph 1 is said to match a point in graph 2, it may be
assumed that a reference to the point in graph 1 would be
taken analogous to the reference of the matching point in
graph 2. Suppose both graph 1 and graph 2 are the
character I written in two different styles. Suppose the

point s1 in graph 1 is the leftmost point of the topmost line.
If we say that this point s1 matches with the point s2 in
graph 2, then we may assume the point s2 in graph 2 to be
the leftmost point of the topmost line. This is shown in
figure 6. The algorithm is as given below.

Figure 6: The matching of points in 2 graphs

MatchPoints(G1,G2)
Step1: ver1← all unique points in first graph which are at
least β units distance apart from each other
Step2: ver2← all unique points in second graph which are
at least β units distance apart from each other
Step3: match ← null
Step3: While ver1 is not null or ver2 is not null
Step4: match[s2] ← s1 such that s1 is a vertex in
ver1 and s2 is a vertex in ver2 and distance between s1 and
s2 is least for any combination of vertices in ver1 and ver2
and distance between s1 and s2 is less than 2β units
Step5: Remove s1 from ver1
Step6: Remove s2 from ver2
Step7: For all vertex v in ver1
Step8: match[v] ← v
Step9: For all vertex v in ver2
Step10: match[v] ← v

4.2.2 Generate Adjacency Matrix: Once the points have
been identified and matched, the next step is to generate
the graph. We use the adjacency matrix way of graph
representation for this problem. We know that since this is
a non-directional graph, the path from a node x to a node y
would also imply the path from the node y to the node x.
This means the final adjacency matrix (W) would be
symmetric. Further, we know that any two points can be
simultaneously connected by a curve and/or a line. Hence
we use the following convention for the representation of
a cell Wij in the adjacency matrix for any pair of vertices i
and j.

Wij = 0 (If the node i is not directly connected by the node
j)
Wij = 1 (If the node i is directly connected by the node j by
only 1 line)
Wij = 2 (If the node i is directly connected by the node j by
only 1 curve)

S2

S1

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 1, March 2010
www.IJCSI.org

22

Wij = 3 (If the node i is directly connected by the node j by
only 1 line and 1 curve)

All other states are invalid. The algorithm for the
generation of the adjacency matrix is given below.

Generate Adjacency(G)
Step1: W ←0
Step2: For all edges e in graph joining points i and j
Step3: Wij ← Wij+1 (if e is a line)
Step4: Wij ← Wij+2 (if e is a curve)
Step5: Wji ← Wij

Step6: Return W

4.2.3 Find Paths: Once we have generated the adjacency
matrix, the next step is to find the paths of all lengths
between all pairs of points. This would be required in the
working of the algorithm. The data generated by this step
becomes a straight input for the further step. We use the
concept of dynamic programming to solve this problem.

We know that we have a graph. This consists of a number
of vertices. For this problem we restrict ourselves to paths
which are of a maximum length of 4. Hence the problem is
to find the existence of a path p, from a vertex i to a vertex
j of a distance of exactly l. Here i and j can take any values
and l is 1, 2, 3 or 4. We define a variable F(i,j,l) that stores
the existence of the path. It stores the last vertex traversed
while travelling from i to j using path of length l. If such a
path is not possible, it stores null

We also know that for single length (i=1), path is only
possible if there is a direct edge between the vertex i and
vertex j. Hence

F(i,j,l) is defined as follows

F(i,j,0)=i, if edge (i,j) exists or edge (j,i) exists
F(i,j,0)=null, otherwise
And
F(i,j,l)= null, if there is no path possible of length l (l ≠ 0)
between vertex i and vertex j.
F(i,j,l)= k, if there is a path possible of length (l-1)
between vertex i and vertex k and j is directly connected to
j(l≠0)

This can also be written as
F(i,j,l)= k, if F(i,k,l-1) exists and (vertex (k,j) exists or
vertex (j,k) exists), l ≠ 0
F(i,j,l)= null, otherwise

Hence using this relation we can find whether the path of
length l exists between nodes i and j. If it exists, the value
of F(i,j,l) is not null. If the path exists, we can find the

path by reverse iterating the value of F(i,j,t) by varying t
from l to 0. This way we would be able to find the exact
path that joins the two vertices.

However while executing the algorithm we need to take
care of the following points:

 Any vertex can occur maximum once in any path.

Hence before making any selection of k in the above
formula of F(i,j,l), we need to make sure that we do
not include a point twice in the entire path from i to j.

 It is possible for various values of k to satisfy the
above formula of F(i,j,l). In such a situation, we first
find out all such possible values of k and then select
any one randomly.

4.2.4 Removing and adding edges: As mentioned in the
above algorithm of crossover, we apply the above data to
find paths in first and second graph between any two
points. If both the paths are found, we remove the edges of
first path and add the edges of the second path from G1. In
such a manner we are able to mix two distinct graphs and
generate a new graph.

However there may be various possibilities in the addition
or removal. While removing an edge from vertex i to a
vertex j in the graph, we take care of the following
conditions, to maintain the consistency of the graph

If Wij=0, or in other words there exists no edge from i to j,
we break the operation
If Wij=1 or in other words there exists a line from i to j, we
remove the line
If Wij=2 or in other words there exists a curve from i to j,
we remove the curve
If Wij=3 or in other words there exists a curve and a line
from i to j, we remove any one of them randomly choosing
Wij>3 is an illegal state and the operation is broken

After the operation Wij is made equal to Wji

Here Wij refers to the adjacency matrix of graph 1 on
which the removal operation is applied. Here we have
taken care that after the operation is over, Wij should be
between 0 and 3, which are the only legal values it can
take.

Similarly while adding an edge from vertex i to a vertex j
in the graph, we take care that after the operation, Wij
should be between 0 and 3, and Wij should be equal to Wji.

Intermixing of graphs may generate a lot many impossible
graphs. By proper checking and breaking operations, we
save the solution set from getting wrong data.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 1, March 2010
www.IJCSI.org

23

4.2.5 Generation of graph: The last step is to convert the
graphs in form of Adjacency Matrix into graphs in form of
edges list. Here we need to take care of another kind of
optimization. This is the distance optimization of the
algorithm. As explained above, in the algorithm we found
out the matching vertices between the two graphs. In this
method, we matched a vertex of first graph to the closest
one of the second graph and vice versa. The purpose of
this matching was to say that matching vertices are
analogous to each other across the two graphs. Hence we
said that if a vertex s1 in first graph matches with a vertex
s2 in second graph, this means that the role of s1 in first
graph is played by s2 in second graph.

But we need to realize that the fitness function works on
the separation between the vertices. While reforming the
graph in this step, we would be free to take the vertices of
first graph as the final vertices of the mixed graph. We
may also take the matching vertices of the second graph in
place of those of the first graph. But since we have already
calculated the fitness function value using the parents,
using any of these methods only gives us the benefit of
style optimizations. If the vertices of the unknown input
lie in between those of the parents, these methods would
not serve very useful.

In pace of taking vertices from any one of the graph, we
take the mean of the matching vertices of the two graphs.
This optimizes the distance as well, along with the style. It
may be noted that in case the two graphs match in style,
which is the case most number of times, the distance
optimization proves very useful in optimizations. The
algorithm for the formation of graph is given below

GenerateGraph(W)
Step1: for all vertex i W
Step2 for all vertex j in W that come after or at i
Step3: if Wij > 2
Step4: add a curve from x to y
Step5: Wij ← Wij - 2
Step6: if Wij =1
Step7: add a line from x to y

Here x=mean of vertices i in first graph and the
corresponding matching vertex of i in second graph
(vertex k such that match[k] ← i)

y=mean of vertices j in first graph and the corresponding
matching vertex of j in second graph (vertex k such that
match[k] ← i)

5. Results

In order to check the working of the algorithm, we coded
the algorithm. Java was used as a language. Input was
given in the form of images. Test data was also stored in
the form of images. We applied the algorithm over the
capital letters of English language. The language contains
26 characters. In order to make the database, we first
wrote each letter twice. The first time the letter was
written perfectly, like the way we are taught. The second
time we used a raw hand to introduce some imperfection.
Letters like A had some types of style associated with
them. We hence, wrote these letters more times as per
requirements. The input data set was made by writing each
character enumerable number of times, using different
ways. The motion of the hand was shaken while writing,
to introduce some unknown imperfections in the test data.
The algorithm was made to first process the training data.
Then it was made to run on the test data by iterating
through the test data one after the other. We used a total
of 69 characters as the training data. The test data was a
collection of 385 inputs. When the algorithm was made to
run, it correctly identified 379 characters. It wrongly
identified 6 test cases. This gave the efficiency of 98.44%.

This problem could have been solved with the absence of
Genetic Algorithms as well. In order to see the importance
of Genetic Algorithms in the problem, we tested the data
in the absence of the application of genetic algorithms. We
found that the genetic algorithms were useful in the
following manner

5.1 Distance Optimization

The character that is input for identification may have the
vertices of its graph at a point quite far from that of the
training data. Actually language allows us to end the
various lines over a large distance. This depends on the
writer and his writing style. But when we would compare
the closeness of such an input, it is clear that the
differences would be large. On the other hand
identification by a human of the same character would be
very easy. Such a problem was highlighted when we tried
to recognize the character M without Genetic Algorithm.
The input given is shown in Figure 7(a). As it can be seen
in this figure, the two slanting lines of M are quite medium
in size and little near. This was not true in any of the
training data. The characteristic of the training data was
that one contained the entire M distributed normally. This
made the slanting lines quite big. Another one was written
in a quick jerk to the middle section, making the section
quite short. This is shown in figure 7(b) and (c). When the
algorithm was made to run, it happened to match with the
character X. But on applying genetic algorithms, the

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 1, March 2010
www.IJCSI.org

24

distance got optimized, and the character was identified
correctly.

5.2 Style Optimization

We have already discussed that the algorithm is very
efficient in mixing two styles and generating a mixture of
styles. This property of the algorithm to generate newer
and newer styles proves very useful in the working of the
algorithm. In the training data set, we had given two
distinct Bs in the training data of B. When operated
without genetic algorithms, these two failed to match with
the input of the data. On the contrary the best matching
was found out to be with the letter S with a high deviation.
But when the same was done with genetic Algorithms, the
B matched correctly. Figure 8 shows the graphs of input,
the training data and one of the genetically produced
results. Here the top curve of first training data was added
to the second training data’s top set of lines. The genetic
algorithm was applied across the vertical top line.

(a) Input (b) Training data1 (c) Training

Figure 7: Input wrongly identified without GA

(a) Input, (b) Training1, (c) Training2, (d) Genetic Mixture of 1 & 2

Figure 8: Input identified wrong without genetic algorithm

6. Conclusions

In this paper we proposed the use of genetic algorithm and
graph theory for solving the problem of offline
handwriting recognition. We had given the input in the
form of images. The algorithm was trained on the training
data that was initially present in the database. The training
data consisted of at least two training data sets per
character in the language. We used the graph theory and
coordinate geometry to convert the images to graphs. We
saw that these conversions changed the whole problem of
handwriting recognition to the problem of graph matching.
When a pure graph matching was done, sufficiently fine
results were obtained. The algorithm could recognize
unknown characters given as input. But the efficiency
improved drastically when we applied genetic algorithms.
This algorithm helped in both style optimization and
distance optimization. In style optimization, it helped us to
mix two different styles to generate a new one that was in

between the two. This was done by mixing two graphs
across two points. We saw how it helped in identification
of character B. We also saw how the algorithm helped in
distance optimization. It transformed the start and end
point of vertices in such a way that it could match better
with the unknown data input. This was done by taking
mean coordinates of the vertices of parents. We saw how
it helped in identification of letter M. In all we got an
efficiency of 98.44%, which proves that this algorithm
works for most of the cases and correctly matched the
unknown input to their character.

Acknowledgments

This work has been supported and sponsored by Indian
Institute of Information Technology and Management
Gwalior.

References
[1] Araokar, Shashank, ‘Visual Character Recognition using

Artificial Neural Networks’, CoRR, Vol abs/cs/0505016,
2005

[2] Bertolami, Roman; Zimmermann, Matthias and Bunke,
Horst, ‘Rejection strategies for offline handwritten text line
recognition’, ACM Portal, Vol. 27, Issue. 16, December
2006

[3] Chellapilla, Kumar; Larson, Kevin; Simard, Patrice and
Czerwinski, Mary, ‘Computers beat Humans at Single
Character Recognition in Reading based Human Interaction
Proofs (HIPs)’, Proceedings of the Second Conference on
Email and Anti-Spam (July 21--22)

[4] Draghici, Sorin, ‘A neural network based artificial vision
system for licence plate recognition’, international Journal
of Network Security, International Journal of Neural
Systems, Vol. 8, No. 1, 1997

[5] FLink, Gernot A and Plotz, Thomas, ‘Unsupervised
Estimation of Writing Style Models for Improved
Unconstrained Off-line Handwriting Recognition’,
International Workshop on Frontiers in Handwriting
Recognition, Suvisoft, France, 2006

[6] Graves, Alex; Fernandez, Santiago; Liwicki, Marcus; Bunke,
Horst and Schmidhuber, Jurgen, ‘Unconstrained Online
Handwriting Recognition with Recurrent Neural Networks’,
Advances in Neural Information Processing Systems 20,
2008

[7] Gunter, Simon and Bunke, Horst, ‘Off-line Cursive
Handwriting Recognition - On the Influence of Training Set
and Vocabulary Size in Multiple Classifier Systems’
Elsevier Volume 43, Issues 3-5, March-May 2005, Pages
437-454

[8] Hewavitharana, S.; Fernando, H. C. and Kodikara, N.D.,
‘Off-line Sinhala Handwriting Recognition using Hidden
Markov Models’, Indian Conference on Computer Vision,
Graphics and Image Processing, India, 2002

[9] Liwicki, Marcus and Bunke, Horst, ‘Int. Journal of Pattern
Recognition and Artificial Intelligence, Vol. 21, No. 1
(2007) 83-98

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 1, March 2010
www.IJCSI.org

25

[10] Shi, Daming; Shu, Wenhao and Liu, Haitao, ‘Feature
Selection for Handwritten Chinese Character Recognition
Based on Genetic Algorithms’, International Conference
on System, Man, and Cybernetics, 1998

[11] Som, Tanmoy and Saha, Sumit, ‘Handwritten character
recognition by using Neural-network and Euclidean distance
metric’, Social Science Research Network, 2008

[12] Soryani, M and Rafat, N, ‘Application of Genetic
Algorithms to Feature Subset Selection in a Farsi OCR’,
Proceedings of World Academy of Science, Engineering
and Technology Volume 18 December 2006 ISSN 1307-
6884

[13] Yuelong, Li; Jinping, Li and Li, Meng, ‘Character
Recognition Based on Hierarchical RBF Neural Networks’,
Proceedings of the Sixth International Conference on
Intelligent Systems Design and Applications (ISDA'06) -
Volume 01

R. Kala Mr. Rahul Kala is a student of final year of 5-year
Integrated Post Graduate Course (BTech + MTech in IT) in Indian
Institute of Information Technology and Management Gwalior. His
areas of research are hybrid system design, robotic planning,
design of algorithms, artificial intelligence and soft computing. He
has published over 25 papers and 2 books in various international
and national journals/conferences. He also takes keen interest in
Free/Open Source Software.

H. Vazirani Mr. Harsh Vazirani is a student of final year of 5-year
Integrated Post Graduate Course (BTech + MTech in IT) in Indian
Institute of Information Technology and Management Gwalior. His
areas of research are artificial neural networks, hybrid system
design, speaker recognition, artificial intelligence and soft
computing.

A. Shukla. Dr. Anupam Shukla is an Associate Professor in the
ICT Department of the Indian Institute of Information Technology
and Management Gwalior. He completed his PhD degree from NIT
Raipur, India in 2002. He did his post graduation from Jadavpur
University, India. He has 22 years of teaching experience. His
research interest includes Speech processing, Artificial
Intelligence, Soft Computing and Bioinformatics. He has published
around 120 papers in various national and international
journals/conferences. He is referee for 4 international journals and
in the Editorial board of International Journal of AI and Soft
Computing. He received Young Scientist Award from Madhya
Pradesh Government and Gold Medal from Jadavpur University.

R. Tiwari Dr. Ritu Tiwari is an Assistant Professor in the IT
Department of Indian Institute of Information Technology and
Management Gwalior. Her field of research includes Biometrics,
Artificial Neural Networks, Speech Signal Processing, Robotics
and Soft Computing. She has published around 60 papers in
various national and international journals/conferences. She has
received Young Scientist Award from Chhattisgarh Council of
Science & Technology and also received Gold Medal in her post
graduation.

