
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 3, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

87

Reliable Mining of Automatically Generated Test
Cases from Software Requirements Specification

(SRS)

Lilly Raamesh1 and G. V. Uma2

1 Research Scholar, Anna University,
Chennai 25, India

 2 Asst. Professor/CSE, Anna University,

Chennai-25, India

Abstract
Writing requirements is a two-way process. In this paper we
use to classify Functional Requirements (FR) and Non
Functional Requirements (NFR) statements from Software
Requirements Specification (SRS) documents. This is
systematically transformed into state charts considering all
relevant information. The current paper outlines how test cases
can be automatically generated from these state charts. The
application of the states yields the different test cases as
solutions to a planning problem. The test cases can be used for
automated or manual software testing on system level. And
also the paper presents a method for reduction of test suite by
using mining methods thereby facilitating the mining and
knowledge extraction from test cases.
Keywords: SRS, FR, NFR, State model, Test case, Test suite,
Mining.

1. Introduction

The systematic production of high-quality software,
which meets its specification, is still a major problem.
Although formal specification methods have been around
for a long time, only a few safety-critical domains justify
the enormous effort of their application. The state of the
practice, which relies on testing to force the quality into
the product at the end of the development process, is also
unsatisfactory. The need for effective test automation
adds to this problem, because the creation and
maintenance of the test ware is a source of inconsistency
itself and is becoming a task of comparable complexity
as the construction of the code.

Data mining algorithms can be applied at different levels
of abstraction and help the user discover more
meaningful patterns. Data mining will create patterns
from the existing database. Using well-established data
mining techniques, practitioners and researchers can
explore the potential of this valuable data in order to
manage their project and to produce higher quality
software systems that are delivered on time and within
budget.

2. Our Approach

 Classifier

Training set

Fig 1. Automatically Generated Test Cases From Software
Requirements Specification mining System

Rule
generator

User
requirements

Classification
rules

Functional and non-
functional

requirements

Generation of State
Diagram

Clustering
techniques Test Suite

Mined test cases

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 3, January 2010
www.IJCSI.org

88

Our approach is as follows
i. Generation of classification rules.
ii. Generate test cases from the UML state machine.
iii .Finally data mining techniques are applied on the
generated test cases in order to further reduce the
test suite size.

2. Generation of Classification Rules

In the current paper, we provide the Software
Requirements Specification to the classifier system. For
classifying we use Weka. The Weka classifier is initially
trained with a training set. Later it is provided with the
SRS. It classifies SRS in to functional and non functional
requirements by generating a classification rules. The
classification rules are applied to the SRS to get FR and
NFR.
From NFR we derive the state machine. State machines
specify the behaviour of a system/subsystem.

3. Generation of Test Cases

This section briefly describes a transformation from State
diagrams in to Test cases. State machines and state
diagrams have a long history in computer science.
Recent versions of UML include an expressive state
diagrams concept. Especially the abstraction mechanisms
in the UML state machine formalism, i.e. nesting of
states and stubs, allow us to map all the important
elements of our use case documents to State machines.

From State Machines to Test Cases

Using state models to derive test cases has been common
practice in the software testing world for some time .The
final goal of model-based testing is to automate the test
case generation from test models as much as possible.
Our approach generates a set of valid test sequences,
where the preconditions of all transitions are established
either by previous actions or by properties of the test data.
The scope of our method is the generation of test
sequences supplemented by constraints on the test data,
as far as these can be derived from the information
presenting the state machine.

The method given in [3] can be used to create test cases
from state machine diagrams which is as follows:

There are three main steps in test case generation, in the
first step a predicate is selected on a transition from a
UML state machine diagram. In the next step, the
selected predicate is transformed into a predicate
function. In the third step, test data are generated
corresponding to the transformed predicate function. The
generated test data are stored for use with an automatic

tester. Once the test data corresponding to a particular
predicate are determined, the steps are repeated by
selecting the next predicate on the state machine diagram.
The process is repeated until all Predicates on the state
machine diagram have been considered.

3.1. Predicate selection:

For selecting a predicate, a traversal of the state diagram
is performed using depth first (DFS) traversal or breadth
first (BFS) traversal to see that every transition is
considered for predicate selection. DFS traversal is used
here. During traversal, conditional predicates on each of
the transitions are looked. Corresponding to each
conditional predicate, test data are generated.

The test data are generated for each predicate
corresponding to the true or false values of the
conditional predicate satisfying the prefix path condition.

3.2. Predicate transformation:

Let I0 consists of all variables that affect a predicate q in
the path P of a state machine diagram, then two points
named ON and OFF for a given border satisfying the
boundary-testing criterion are created. The relational
expressions of the predicates are transformed into a
function F called predicate function. If the predicate q is
of the form (E1 op E2), where E1 and E2 are arithmetic
Expressions and op is a relational operator; then F = (E1
-E2) or (E2 - E1) depending on whichever is positive for
the data I0. Next, the input data I0 is modified such that
the function F decreases and finally turns negative. When
F turns negative, it corresponds to the alternation of the
outcome of the Predicate. Hence, as a result of the
predicate transformation, the point at which the outcome
of a predicate q changes, corresponds to the problem of
minimization of the corresponding function F. This
minimization is achieved through repeated modification
of the input data values.

3.3. Test data generation:

The basic search Procedure we use for finding the
minimum of a predicate function F is the alternating
variable method. This method is based on minimizing F
with respect to each input variable in turn. An initial set
of inputs can be randomly generated by instantiating the
data variables. Each input data variable xi is increased/
decreased in steps of Sxi, while keeping all other data
variables unchanged. Here, Sxi refers to a unit step of the
variable xi. The exact value of unit step can be defined
conveniently. For example, unit step of 1 is normally
used for integer values. Unit step can easily be defined

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 3, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

89

for many other types of data such as float, double, array,
and pointer and so on.

However, the method may not work when the variable
assumes only a discrete set of values. Each predicate in a
path can be considered to be a constraint. A path will not
be traversed for some input data value, if the
corresponding constraint is not satisfied. If a path P is not
traversed for some data value, then we say that a
constraint violation has taken place for that data value.
We compute the value of F when each input datum is
modified by Sxi. If the function F decreases for the
modified data, and Constraint violation does not occur,
then the given data variable and the appropriate direction
is selected for minimising F further. Here, appropriate
direction refers to whether we increase or decrease the
data variable xi so that F is minimised. We start
searching for a minimum with one input variable, while
keeping all other input variables constant, until the
solution is found (the predicate function becomes
negative) or the positive minimum of the predicate
function is located. In the latter case, the search
continues from this minimum value with the next input
variable. Two data values Iin (inside boundary) and Iout
(outside boundary) are generated using the search
procedure mentioned. These two points are on different
sides of the boundary.

For finding these two data points, a Series of moves is
made in the same direction determined by the search
procedure mentioned above and the value of F is
computed after each move. The size of the step is
doubled after each successful move. This makes the
search for the test data quick. A successful move is one
where the value computed by the predicate function F is
reduced. When the Minimisation function becomes
negative (or zero), the required data values Iin and Iout
are noted. These Points are refined further to generate a
data value, which corresponds to a minimum value of the
minimisation function along the last processed Direction.
This refinement is done by reducing the size of the step
and comparing the value of F with the previous value.
Also, the distance between the data points is minimised
by reducing the step size. For each Conditional predicate
in the state machine diagram, we generate the test data.
The generated test data are stored in a file. A test
executor can use these test cases later for automatic
testing.

The above said procedure produces a test suit that is of
some what smaller size. But we can further reduce the
size by using mining techniques.

4. Mining Techniques For Test Suite
Reduction

Data mining is the process of extracting patterns from
data. As more data are gathered, with the amount of data
doubling every three years, data mining is becoming an
increasingly important tool to transform these data into
information. It is commonly used in a wide range of
profiling practices, such as marketing, surveillance, fraud
detection and scientific discovery.

While data mining can be used to uncover patterns in
data samples, it is important to be aware that the use of
non-representative samples of data may produce results
that are not indicative of the domain. Similarly, data
mining will not find patterns that may be present in the
domain, if those patterns are not present in the sample
being "mined". There is a tendency for insufficiently
knowledgeable "consumers" of the results to attribute
"magical abilities" to data mining, treating the technique
as a sort of all-seeing crystal ball. Like any other tool, it
only functions in conjunction with the appropriate raw
material: in this case, indicative and representative data
that the user must first collect. Further, the discovery of a
particular pattern in a particular set of data does not
necessarily mean that pattern is representative of the
whole population from which that data was drawn.
Hence, an important part of the process is the verification
and validation of patterns on other samples of data.

The term data mining has also been used in a related but
negative sense, to mean the deliberate searching for
apparent but not necessarily representative patterns in
large numbers of data. To avoid confusion with the other
sense, the terms data dredging and data snooping are
often used. Note, however, that dredging and snooping
can be (and sometimes are) used as exploratory tools
when developing and clarifying hypotheses.[6]

4.1. Applying data mining concepts

There are many methods available for mining different
kinds of data, including association rule, characterization,
classification, clustering, etc.

We can utilize any of these techniques based on

• What kind of data bases to work on
• What kind of knowledge to be mined
• What kind of techniques to be utilized

 We can apply association or clustering
techniques for test case mining.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 3, January 2010
www.IJCSI.org

90

4.1.1. ASSOCIATION

Association rules describe the association among items
in the large data base. For example, one may find, from
a large set of transaction data, such as association rule as
if a customer buys(one brand of) milk, he/ she usually
buys(another brand of) bread in the same transaction.
Using these association rules, we can derive the
association patterns from large databases.

4.1.2. DATA CLASSIFICATION

Data classification is the process which finds the
common properties among a set of objects in a database
and classifies them into different classes, according to a
classification model.

4.1.3. CLUSTERING

Clustering is the process of grouping the data into classes
or clusters so that object within a cluster has high
similarity in comparison to another, but is dissimilar to
object in other clusters. It doesn’t require the class label
information about the data set because it is inherently a
data driven approach. It is the process of grouping or
abstract object into classes of similar object.

Among all the mining techniques, clustering is the most
effective technique which we are going to use for test
case mining.

Clustering analysis helps constant meaningful
partitioning of a large set of object based on a “divide
and conquer” methodology which decomposes a large
scale system into smaller components to simplify design
and implementation. As a data mining task, data
clustering identifies cluster or densely populated regions,
according to some distance measurement, in a large,
multidimensional data. Given a large set of
multidimensional data points, the data space is usually
not uniformly occupied by the data points. Data
clustering identifies the sparse and the crowded places,
and hence discovers the overall distributions patterns of
the data set.

For cluster analysis to work efficiently and effectively as
many literatures have presented, there are the following
typical requirements of clustering in data mining.

o Scalability:
o Ability to deal with different types of attributes:
o Discovery of clusters with arbitrary shape:
o Minimal requirements for domain knowledge to

determine input parameters:

o Ability to deal with noisy data:
o Insensitivity to the order of input records:
o High dimensionality:

5. Experiments

Total 365 sentences

• 235 annotated as “NFR”
• 130 annotated as “FR”.

Training
set no

Correctly
classified
sentences

In-Correctly
classified sentences

1 215 150
2 259 106
3 356 9

6. Conclusions

In this paper, a new approach to automatically generate
test cases from SRS and mining of test cases has been
discussed. Firstly a formal transformation of a detailed
SRS to a UML state model, secondly the generation of
test cases from the state model and lastly mining of Test
cases. The introduction of agents can bring enhancement.

References

1.Zhijie Xu, Laisheng Wang, Jiancheng Luo, Jianqin Zhang,
“A Modified clustering algorithm for data mining”, Beijing
100101, China.
2. Ming-Syan Chen, Senior Member, IEEE Jiawei Han, Senior
Member, IEEE, and Philip S.Yu, Fellow, IEEE. “ Data Mining:
An Overvies from a Database Perspective”.
3. Automatic test case generation using unified Modeling
language (UML) state diagrams, P. Samuel R. Mall A.K.
Bothra, Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur 721302, West
Bengal, India
E-mail: philips@cusat.ac.in
4.Dae-Kyoo Kim, Jon Whittle, ”Generating UML Models from
Domain Patterns”, USA.
5. Tao Xie,USA. Jian Pei, Canada, Ahmed E.Hassan,Canada.
“Mining software Engineering Data”.
6.”A Comparative Evaluation of Tests Generated from
Different UML diagrams”, Supaporn Kansomkeat, Department
of Computer Science Faculty of Science, Prince of Songkla
University Hat Yai, Songkhla, 90112, Thailand”.
7. Sarma M., "System State Model Generation from UML 2.0
Design", Technical Report TR-04-07, Department of Computer
Science and Engineering, Indian Institute Of Technology,
Kharagpur, April 2007
8. Castejon H. N. "Synthesizing State-machine Behavior from
UML Collaboration and Use Case Maps", Lecture Notes in
Computer Science, Vol. 3530, Springer, June 2005.
9. Gupta A., "Automated Object's Statechart Generation and
Testing from Class Method Contracts", 3rd Intl Workshop on

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 3, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

91

Model Development, Validation, and Verification (MoDeV2a
2006), Genova, Italy, October 2006.
10. Vasilache S., and Tanaka J., "Synthesis of State Machines
from Multiple Interrelated Scenarios Using Dependency
Diagrams," Journal of Systemics, Cybernetics and Informatics,
Vol.3, No.3, 2006.

	Abstract
	1. Introduction

