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Abstract 
In order to achieve fault tolerance, highly reliable system often 
require the ability to detect errors as soon as they occur and 
prevent the speared of erroneous information throughout the 
system. Thus, the need for codes capable of detecting and 
correcting byte errors are extremely important since many 
memory systems use b-bit-per-chip organization. Redundancy 
on the chip must be put to make fault-tolerant design available. 
This paper examined several methods of computer memory 
systems, and then a proposed technique is designed to choose a 
suitable method depending on the organization of memory 
systems. The constructed codes require a minimum number of 
check bits with respect to codes used previously, then it is 
optimized to fit the organization of memory systems according 
to the requirements for data and byte lengths. 
Keywords: Unidirctional Error Coding, Correcting Codes 
Design, Error Detection and Correcting and Error 
Constructing Codes. 

1. Introduction 

In recent years, there has an increasing demand for 
efficient and reliable data transmission and storage 
systems. Fujiwara [1] insists that before designing a 
dependable system, we need to have enough knowledge 
of the system’s faults, errors, and failures of the 
dependable techniques including coding techniques, and 
of the design process for practical codes. 
Saitoh and Imai [2] represent codes that are capable of 
correcting byte and detecting multiple unidirectional 
bytes, but it is efficient code when b≤8. They also 
propose in [3] a code, but it is not efficient code for b≤8. 
Zhang and Tu [4] propose a systematic t-EC/AUED 
codes which it's encoding and decoding is relatively 
easy, but it is efficient in the cases of t=1 and 2 and when 
k≤31.  

S. Al-Bassam [5] presents an improved method to 
construct t error-correcting and all unidirectional error 
detecting codes (t-EC/AUED). 
Umanesan and Fujiwara [6] propose a class of codes 
called Single t/b-error Correcting—Single b-bit byte 
Error Detecting codes which have the capability of 
correcting random t-bit errors occurring within a single 
b-bit byte and simultaneously indicating single b-bit byte 
errors. 
Bose, Elmougy and Tallin [7] design some new classes 
of t-unidirectional error-detecting codes over Zm. 
Krishnan, Panigrahy and Parthasarathy [8] develop the 
error-correcting codes necessary to implement error-
resilient ternary content addressable memories. They 
prove that the rate (ratio of data bits to total number of 
bits in the codewords) of the specialized error-correcting 
codes necessary for ternary content addressable 
memories cannot exceed 1/t, where t is the number of bit 
errors the code can correct. 
Naydenova and Kløve [9] study codes that can correct up 
to t symmetric errors and detect all unidirectional errors. 
Biiinck and van Tilborg gave a bound on the length of 
binary such codes. They gave a generalization of this 
bound to arbitrary alphabet size. This generalized 
Biiinck-van Tilborg bound, combined with constructions, 
is used to determine some optimal binary and ternary 
codes for correcting t symmetric errors and detecting all 
unidirectional errors. 
In computer memory, when data are stored in a byte-per-
chip, byte errors may be occurring. When both one to 
zero and zero to one error may occur, but they do not 
occur simultaneously in a single byte, the errors are 
called a unidirectional byte error, which is a kind of byte 
error [10]. 
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2. Coding Theory 

The theory and practice of error-correction coding is 
concerned with protection of digital information against 
the errors that occur during data transmission or storage. 
Many ingenious error correcting techniques based on a 
vigorous mathematical theory have been developed and 
have many important and frequent applications. The 
current problem with any high-speed data 
communication system such as storage medium is how to 
control the errors that occur during storing data in 
storage medium. In order to achieve reliable 
communication, designers should develop good codes 
and efficient decoding algorithms [11].  
There are three types of faults transient, intermittent, and 
permanent faults. Transient faults are likely to cause a 
limited number of symmetric errors or multiple 
unidirectional errors. Also, intermittent faults, because of 
short duration, are expected to cause a limited number of 
errors. On the other hand, permanent faults cause either 
symmetric or unidirectional errors, depending on the 
nature of the faults. The most likely faults in some of the 
recently developed LSI/VLSI, ROM, and RAM 
memories (such as the faults that affect address decoders, 
word lines, power supply, and stuck-fault in a serial bus, 
etc.) cause unidirectional errors. The number of 
unidirectional errors cause by the above mentioned faults 
can be fairly large [12]. 
The errors that can occur because of the noise are many 
and varied. However, they can be classified into three 
main types: symmetric, asymmetric, and unidirectional 
errors [7]. 

2.1 Error Control for Computer Main Memories 

Error correcting codes have been used to enhance the 
reliability and data integrity of computer memory 
systems. The error correction can be incorporated in to 
the hardware. 
In particular the class of single error-correcting and 
double error-detecting (SEC-DED) binary codes has 
been successfully used to correct and detect errors 
associated with failures in semiconductor memories. The 
most effective organization is the so-called 1 bit per chip 
organization. In this organization, all bits of a code word 
are stored in different chips. Any type of failures in a 
chip can corrupt at the most 1 bit of the code word. As 
long as the errors do not line up in the same code word, 
multiple errors in the memory are correctable. Large 
scale integration (LSI) and very large scale integration 
(VLSI) memory systems offer significant advantages in 
size, speed, and weight over earlier memory systems. 

These memories are normally packaged with multiple bit 
(or byte) per chip organization [13]. 
Coding techniques play a major role in segment the 
information in to m blocks each block of k-bit or it may 
be taken as a single block of length k (k=256, 512, 1024, 
2048, 8192, 16384, 32768, 65536, 131072, 262144, 
524288) according to the organized memory system in 
our research.  BCH and RS code are two powerful 
approaches to error control coding in memory systems. 
The information segmented is the first step when 
information in a computer memory is written. Then this 
k-bit encoded in to n-bit called code word which consist 
of k-bit and r-bit parity check (n=k+r). This code word 
stored in memory. 
The decoding method used to obtain the information k 
with no errors according to the coding technique when a 
code word fetched from the storage. 

2.2 Reed-Solomon Codes (RS Codes) 

A RS code is a class of non binary BCH codes. It is also 
a cyclic symbol error-correcting code. The RS code 
represent a very important class of algebraic error-
correcting codes, which has been used for improving the 
reliability of compact disc, digital audio tape and other 
data storage systems [14]. Secure communications 
systems commonly use RS code as one method for 
protection against jamming.     RS codes are also used for 
error control in the data storage systems, such as 
magnetic drums and photo digital storage systems. 
A RS code is block sequence of finite field GF (2m) of 2m 
binary symbols, where m is the number of bits per 
symbol. This sequence of symbols can be viewed as the 
coefficients of code polynomial C(x)=c0+c1x+c2x²+…+cn-

1xn-1 where the field elements Ci are from GF(2m) [10]. 
A t-error-correcting RS code with symbols from FG(2m) 
has the following parameters: 
Code length                                  : n=2m-1 
Number of information                : k=n-2t 
Number of parity-check digits      : n-k=2t 
Minimum distance                        : dmin=2t+1 
In the following, we shall consider Reed-Solomon codes 
with code symbols from the Galois field GF(2m). The 
generator polynomial of a t-error-correcting Reed-
Solomon code of length 2m-1 is  
g(x)=(x+α)(x+α2)…(x+α2t), where α is a primitive 
element of GF(2m), and the coefficients gi, 0≤ l ≤2t are 
also from GF(2m). An (n,k) RS code generated by g(x) is 
an (n,n-2t) cyclic code whose code vectors are multiples 
of g(x) [14,15].  
Consider RS codes with symbols from GF(2m), where m 
is the number of bits per symbol.  
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Let d(x)=cn-kxn-k+cn-k+1xn-k+1+…+cn-1xn-1 be the 
information polynomial and p(x)=c0+c1x+…+cn-k-1xn-k-1 
be the check polynomial. Then the encoded RS code 
polynomial is expressed by: 

)()()( xdxpxc +=                    (1)         
where ci,0≤ l ≤n-1, are field elements in GF(2m). Thus, a 
vector of n symbols, (c0,c1,…,cn-1) is a code word if and 
only if its corresponding polynomial c(x) is a multiple of 
the generator polynomial g(x). The common method of 
encoding a cyclic code is to find p(x) from d(x) and g(x), 
which results in an irrelevant quotient q(x) and an 
important remainder y(x). That is,  

)()()()( xyxgxqxd +=                   (2) 
Substituting Eq. (1) in to (2) gives: 

)()()()()( xyxgxqxpxc ++=                                    (3) 
 If we define the check digits as the negatives of the 
coefficients of y(x), i.e, p(x) = -y(x), it follows that: 

)()()( xgxqxc =                                 (4) 
This ensures that the code polynomial c(x) is multiple of 
g(x). Thus, the RS encoder will perform the above 
division process to obtain the check polynomial p(x) 
[14]. 
Theorem 1: A Reed-Solomon code is a maximum 
distance code, and the minimum distance is n-k+1. 
This tells us that for fixed (n,k), no code can have a 
larger minimum distance than a RS code. This is often a 
strong justification for using RS codes. RS codes always 
have relatively short block length as compared to other 
cyclic codes over the same alphabet [16]. 
In decoding a RS code (or any non binary BCH code), 
the same three steps used for decoding a binary BCH 
code are required, in addition a fourth step involving 
calculation of the error value is required. The error value 
at the location corresponding to B1 is given by the 
following equation: 

( )
≈Ι

−

= νπ
β 1

1
LZei

                   (5)  

Where z(x) = 1 + (s1+σ1)x + (s2+σ1s1 + σ2)x2+…+ 
(sv+σsv-1+σ2sv-2+…+σv)xv  
The decoding method of RS code is worth mentioning 
because of its considerable theoretical interest, even 
though it is impractical [15]. 

3. Byte-Per-Chip Memory Organization 

In many computer memory and VLSI circuits 
unidirectional errors are known to be predominant 
protection must be against combinations of unidirectional 
and random errors because random byte errors also 
appear from intermittent faults in memories. Thus it is 
very important to have such codes for protection of byte 
organized memories. Table (1) shows the parameters of 
modified RS code after shortening. 

This code is optimal, thus it is the only SbEC-DbEC 
code with three check bytes but for a given size b(b<16) 
there is only one or two value of information. 

 
 

Table 1: The parameters of shortened modified RS code 
b n n k
5 16 79 64
6 46 274 256
7 77 533 512
8 131 1048 1024
9 231 2075 2048

10 823 8222 8192
11 1493 16417 16384
12 2734 32804 32768
13 5045 65575 65536
14 9366 131114 131072
15 17480 262189 262144

 
Let the two codes whose H0 matrices are denoted as Hv 
and Hw have minimum Hamming distance dmin=4 
GF(2b), let vi, i=0,1,…,n-1, denote a column vector in the 
matrix Hv. Preserving minimum distance, matrix Hw 
converted to matrix Hw having an all 'I' row vector. 
Next, this all 'I' row vector is removed from the matrix 
Hw, whose resultant matrix is now called Hw. Let vj, 
j=0,1,…,m-1, denote a column vector of matrix Hw. The 
new code has a parity check matrix H1 of the form that 
each column in it is defined by the following equation: 

)()( ji
T

ij WVC =                    (6) 
i=0,1,…,n-1, and j=0,1,…,m-1.The dmin of this code is 
four over GF(2b).  
For example, let b=2, and Hw equal to  
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This matrix can be converted to the new form that has 
top row vector which has all 'I' elements. This conversion 
can be carried out in the following manner. 
The second row of Hw is multiplied by an arbitrary non 
zero element Т^a. The multiplied result and the third row 
vector are added to the first row vector in Hw. If the 
added row vector has non zero element, each column can 
be normalized so that the first row element has a 'I' 
element. It can be derived that the number of Т^a 
elements is 2b-1. If Тa=Т' is chosen then: 
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Here Hv as the H0 matrix shown in Eq. (7) is adapted. An 
S2EC-D2ED code, whose H1 matrix has five rows, can 
be constructed from Hv and Hw''. 
In the same manner, the SbEC-DbED codes whose H0 
matrices have odd number are obtained in the same way. 
If even number of rows is required (in this example), 
matrix Hw' can be shown as follows: 

⎥
⎦

⎤
⎢
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⎡
Ι
ΙΙ

=′Η
0

w                  (10) 

The code length N for the proposed codes is given as 

follows: 
2/)1()22( −+= rbN              r:odd (≥3)                (11) 

2/)2()22(2 −+= rbN           r:even (≥4)               (12) 

Table 2: The parameters of SbEC-DbED RS codes 
b=5 b=6 b=7

r n k n k n k
3 170 155 396 378 910 889
4 340 320 792 768 1820 1792
5 5780 5755 26136 26106 11300 118265
6 11560 11530 52272 52236 236600 236558

b=8 b=9 b=10
r n k n k n k
3 2064 2040 4626 4599 10260 10230
4 4128 4096 9252 9216 20520 20480

b=11 b=12 b=13
r n k n k n k
3 22550 22517 49176 49140 106522 106483
4 45100 45056 98352 98304 213044 212992

b=14 b=15 
r n k n k
3 229404 229362 
4 458808 458752 

491550 491505 

 
It is important to know that r is a parity check digits in 
bits, n is the code word length and k is the information 
length in all tables observer in this paper. 
The Parameters of SbEC-DbED RS codes are illustrated 
in table (2). When the code is shortening table (3) is 
obtained. 
It is obvious from comparing the parameters in table (1) 
with the parameters in table (3) that the parameters in 
table (3) are more efficient than the parameters in table 
(1). 

Theorem 2 [17]: Let H be the parity check matrix of a 
(n,n-r) linear SbEC-DbED code over GF(2b). The (2n, 
2n-r-1) linear code over GF(2b) defined by the parity 
check matrix H'. 
 

⎥
⎦

⎤
⎢
⎣

⎡
ΗΗ

=Η′
111000 KK                                           (13) 

Eq. (13) is a SbEC-DbED code. 
Table (4) is obtained after applying theorem 2 to the 
parameters in table (2). Table (5) shows the results when 
the parameters are shorten. 
After obvious comparison between the parameters in 
table (1) and parameters in table (3), we observe that 
there is no table with the best parameters for all value of 
k, so for the best parameters obtained table (6) is 
presented. 
Since the two chip failure no longer takes place at the 
same time, these parameters can be used. Codes for only 
SbEC-DbED are proposed. So these codes can not 
recognize all the unidirectional errors which occur in b-
bit-per-chip memory organization. Wherefore code that 
fits memory organized in b-bit-per-chip fashion, and 
4<b<16 is constructed. 

 4. Conclusions 

The most likely faults in many computer memories cause 
unidirectional errors, thus a detection of unidirectional 
errors is required. In addition, byte-error-
correcting/detecting codes are useful for protection 
against byte errors which tend to occur when data are 
stored in byte-per-chip memory organization. A 
proposed technique for constructing SbEC-DbED codes 
is presented in this paper that can be practically applied 
to large capacity memory units. The obtained results 
indicate that the proposed technique is suitable and 
efficient for memory system to recognize unidirectional 
errors that occur in bit-per chip memory organization. 
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Table 3: The parameters of shortened SbEC-DbED RS codes 

b=5 b=6 b=7 
r n k r n k r n k
3 47 32 3 82 64 3 149 128
 79 64  146 128 277 256
 143 128  274 256 533 512

4 276 256 4 536 512 4 1052 1024
5 537 512 5 1054 1024 5 2083 2048
 1049 1024  2078 2048 4131 4096
 2073 2048  4126 4096 8227 8192
 4121 4096  8222 8192 16419 16384

6 8222 8192  16414 16384 32803 32768
7 16419 16384 6 32804 32768 65571 65536
 32803 32768 7 65578 65536 6 131114 131072
 65571 65536  131114 131072 7 262193 262144
 131107 131072  262186 262144 524337 524288

8 262184 262144  524330 524288  
9 524333 524288   

b=8 b=9 b=10 
r n k r n k r n k
3 280 256 3 539 512 3 1054 1024

 536 512  1051 1024 2078 2048
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 1048 1024  2075 2048 4126 4096
4 2080 2048  4123 4096 8222 8192
 4128 4096 4 8228 8192 4 16424 16384

5 8232 8192 5 16429 16384 5 32818 32768
 16424 16384  32813 32768 65586 65536
 32808 32768  65581 65536 131122 131072
 65576 65536  131117 131072 262194 262144
 131112 131072  262189 262144 524338 524288
 262184 262144  524333 524288  
 524328 524288   

b=11 b=12 b=13 
r n k r N k r n K
3 2081 2048 3 4132 4096 3 8231 8192
 4129 4096  8228 8192 16423 16384
 8225 8192  16420 16384 32807 32768
 16417 16384  32804 32768 65575 65536

4 32812 32768 4 65584 65536 4 131124 131072
5 65591 65536  131132 131072 5 262209 262144
 131127 131072  262204 262144 524353 524288
 262199 262144  524348 524288  
 524343 524288   

b=14 b=15
r n k r N k
3 16426 16384 3 32813 32768
 32810 32768  65581 65536
 65578 65536  131117 131072
 131114 131072  262189 262144

4 262200 262144 4 524348 524288
 524344 524288  

 
Table 4: The parameters of new SbEC-DbED RS codes 

b=5 b=6 b=7 
r n k r n K r n k 

16 340 324 19 792 773 22 1820 1798
21 680 659 25 1584 1559 29 3640 3611
26 11560 11534 31 52272 52241 36 236600 236564

b=8 b=9 b=10 
r n k r n K r n k 

25 4128 4103 28 9252 9224 31 20520 20489
33 8256 8223 37 18504 18467 41 41040 40999

b=11 b=12 b=13 
r n k r n K r n k 

34 45100 45066 37 98352 98315 40 213044 213004
45 90200 90155 49 196704 196655 53 426088 426035

b=14 b=15
r n k r n K

43 458808 458765 46 983100 983054
 

Table 5: The parameters of shortened new SbEC-DbED RS codes 
b=5 b=6 b=7 

r n k r n k r n k
16 48 32 19 83 64 22 150 128

 80 64  147 128 278 256

 144 128  275 256 534 512
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 272 256  531 512 1046 1024
21 533 512 25 1049 1024 29 2077 2048
26 1050 1024 31 2079 2048 36 4132 4096

 2074 2048  4127 4096 8228 8192
 4122 4096  8223 8192 16420 16384
 8218 8192  16415 16384 32804 32768

31 16415 16384  326799 32768 65572 65536
36 32804 32768 37 65573 65536 131104 131072

 65572 65536 43 131115 131072 43 262187 262144
 131108 131072  262187 262144 50 524338 524288
 262180 262144  524331 524288  
 524329 524288   

b=8 b=9 b=10 
r n k r N K r n k

25 281 256 28 540 512 31 1055 1024
 537 512  1052 1024 2079 2048
 1049 1024  2076 2048 4127 4096
 2073 2048  4124 4096 8223 8192
 4121 4096  8220 8192 16415 16384

33 8225 8192 37 16421 16384 41 32809 32768
41 16425 16384 46 32814 32768 51 65587 65536

 32809 32768  65582 65536 131123 131072
 65577 65536  131118 131072 262195 262144
 131113 131072  262190 262144 524339 524288
 262185 262144  524334 524288  
 524329 524288   

b=11 b=12 b=13 
r n k r n k r n k

34 2080 2048 37 4133 4096 40 8232 8192
 4130 4096  8229 8192 16424 16384
 8226 8192  16421 16384 32808 32768
 16418 16384  32805 32768 65576 65536
 32802 32768  65573 65536 131112 31072

45 65581 65536 49 131121 131072 53 262197 262144
56 131128 131072 61 262205 262144 66 524354 524288

 262200 262144  524349 524288  
 524344 524288   

b=14 b=15
r n k r n k

43 16427 16384 46 32814 32768
 32811 32768  65582 65536
 65579 65536  131118 131072
 131115 131072  262190 262144
 262187 262144  524334 524288
 524345 524288  

 
Table 6: Best parameters obtained 

                        b=5                                                       b=6 b=7 
(n,k) Table (n,k) Table no. (n,k) Table no. 

(47,32) (3) (82,64) (3) (149,128) (3) 
(79,64) (1,3) (146,128) (3) (277,256) (3) 

(143,128) (1,3) (274,256) (1,3) (533,512) (1,3) 
(272,256) (5) (531,512) (1) (1046,1024) (5) 
(533,512) (5) (1049,1024) (1) (2077,2048) (5) 

(1049,1024) (3) (2078,2048) (3) (4131,4096) (3) 
(2073,2048) (3) (4126,4096) (3) (8227,8192) (3) 
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(4121,4096) (3) (8222,8192) (3) (10419,16384) (3) 
(8218,8192) (5) (16414,16384) (3) (32803,32768) (3) 

(16415,16384) (5) (32799,32768) (5) (65571,65536) (3) 
(32803,32768) (3) (65573,65536) (5) (131108,131072) (5) 
(65571,65536) (3) (131114,131072) (3) (262187,262144) (5) 

(131107,131072) (3) (262186,262144) (3) (524377,524288) (3) 
(262180,262144) (5) (524330,524288) (3)   
(524329,524288) (5)     

b=8 b=9 b=10 
(n,k) Table no. (n,k) Table no. (n,k) Table no. 

(280,256) (3) (539,512) (3) (1054,1024) (3) 
(536,512) (3) (1051,1024) (3) (2078,2048) (3) 

(1048,1024) (1,3) (2075,2048) (1,3) (4126,4096) (3) 
(2073,2048) (5) (4123,4096) (1,3) (8222,8192) (1,3) 
(4121,4096) (5) (8220,8192) (5) (16415,16384) (5) 
(8225,8192) (5) (16421,16384) (5) (32809,32768) (5) 

(16424,16384) (3) (32813,32768) (3) (65586,65536) (3) 
(32808,32768) (3) (65581,65536) (3) (131122,131072) (3) 
(65576,65536) (3) (131117,131072) (3) (262194,262144) (3) 

(131112,131072) (3) (262189,262144) (3) (524338,524288) (3) 
(262184,262144) (3) (524333,524288) (3)   
(524328,524288) (3)     

b=11 b=12 b=13 
(n,k) Table no. (n,k) Table no. (n,k) Table no. 

(2081,2048) (3) (4132,4096) (3) (8231,8192) (3) 
(4129,4096) (3) (8228,8192) (3) (16423,16384) (3) 
(8225,8192) (3) (16420,16384) (3) (32807,32768) (3) 

(16417,16384) (1,3) (32804,32768) (1,3) (65575,65536) (1,3) 
(32802,32768) (5) (65573,65536) (5) (131112,131072) (5) 
(65581,65536) (5) (131121,131072) (5) (262197,262144) (5) 

(131127,131072) (3) (262204,262144) (3) (524353,524288) (3) 
(262199,262144) (3) (524348,524288) (3)   
(524343,524288) (3)     

b=14 b=15 
(n,k) Table no. (n,k) Table no. 

(16426,16384) (3) (32813,32768) (3) 
(32810,32768) (3) (65581,65536) (3) 
(65578,65536) (3) (131117,131072) (3) 

(131114,131072) (1,3) (262189,262144) (3) 
(262187,262144) (5) (524334,524288) (5) 
(524344,524288) (3) 
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