
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 3, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

47

Framework for Visualizing Model-Driven Software Evolution
and its Application

Akepogu ANAND RAO and Karanam MADHAVI

Computer Science & Engineering Department
Jawaharlal Nehru Technological University,

Anantapur, Andhra Pradesh, India.

Abstract
Software Visualization encompasses the development and
evaluation of methods for graphically representing
different aspects of methods of software, including its
structure, execution and evolution. Creating visualizations
helps the user to better understand complex phenomena. It
is also found by the software engineering community that
visualization is essential and important. In order to
visualize the evolution of the models in Model-Driven
Software Evolution, authors have proposed a framework
which consists of 7 key areas (views) and 22 key features
for the assessment of Model Driven Software Evolution
process and addresses a number of stakeholder concerns.
The framework is derived by the application of the Goal
Question Metric Paradigm. This paper aims to describe an
application of the framework by considering different
visualization tools/CASE tools which are used to visualize
the models in different views and to capture the
information of models during their evolution. Comparison
of such tools is also possible by using the framework.
Keywords: Model-Driven Software Evolution, Software
Visualization, Visualization tools.

1. Introduction

Visualization is used to enhance information
understanding by reducing cognitive overload. Using
visualization methodologies and tools, people are often
able to understand the information presented in a shorter
period of time or to a greater depth. The term
“visualization” can refer to the activity that people
undertake when building an internal picture about real
world or abstract entities. Visualizing can also refer to the
process of determining the mappings between abstract or
real-world objects and their graphical representation. This
work uses the term “visualization” in the later sense: the
process of mapping
the evolution of models to the stakeholder concerns.

The introduction of Model Driven Engineering (MDE)
needs a new style of evolution i.e. Model-driven Software
Evolution. The first fundamental premise [1] for Model-
Driven Software Evolution (MoDSE) is that evolution
should be a continuous process. The second premise is
that reengineering of legacy systems to the model-driven
of the paradigm should be done incrementally. MDE
introduces a multitude of languages that are themselves
artifacts of the development process. Due to these
multitude languages in MoDSE, there is a need to have the
model interaction, integration, mapping and
transformation. Further there should be possible views to
capture this information about models during the
evolution. For this purpose multiple views for MoDSE
have been proposed in [9]. Stakeholder’s involvement in
MoDSE typically has interests in, or concerns relevant to
that system. The ability of models to evolve gracefully is
becoming a concern for many stakeholders. Due to
different and interrelated models used to design an entire
system in MoDSE, the concerns of stakeholders may
differ from one role to another role that a stakeholder play
during the life time of a software project. So, visualization
provides better solution to understand the complex
information during evolution of the models. This can be
done by using the existing visualization and/or CASE
tools. Software Visualization tools use graphical
techniques to make software artifacts visible.

Evaluating a particular visualization tool for MoDSE is
essential. Common practice is that some set of guidelines
are followed and a qualitative summary is produced.
However, these guidelines do not usually allow a
comparison of competing techniques or tools. A
comparison is important because it identifies possible
flaws in the research area or software development. Thus,
a framework for describing attributes of tools is needed.
Once the tools have been assessed in this common
framework, a comparison is possible. However, a
framework can be used for comparison, discussion, and

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 3, January 2010
www.IJCSI.org

48

formative evaluation of the tools. Such framework was
proposed in [8]. So, the major contribution of this paper is
to show how the framework can be applied to compare the
Visualization Tools which is presented in section 4. A
Framework for visualizing Model Driven Software
Evolution falls into seven key areas (views): Context
View, Inter-model View, City View, Metric View,
Transformation View, Evolution View and Evaluation
view [9] and 22 Key features are identified for all key
areas. The framework is used to evaluate visualization
tools and it is also used to assess tool appropriateness from
a variety of stakeholder perspectives.

This paper is structured as follows: Section 2 discusses the
related work. Section 3 summarizes the framework.
Section 4 discusses an application of the framework by
considering different Visualization tools/CASE tools.
Section 5 outlines the conclusions and giving an outlook
on future work.

2. Related Work

This section reviews the literature related to the fields of
Software Visualization, Software Evolution Visualization
and Model Driven approaches.

Source Viewer 3D (sv3D) [6] is a Software Visualization
framework that builds on the SeeSoft metaphor. sv3D can
show large amounts of source code in one view. Object
based manipulation methods and simultaneous alternative
mappings are available to the user. The types of user tasks
and interactions that are supported by sv3D, is not directly
related to solving/visualizing specific software
engineering tasks and it is a prerequisite for a software
visualization tool.

Architecture to Support Model Driven Software
Visualization [7], borrows the field of Model Driven
Engineering (MDE) to assist with the creation of highly
customizable interfaces for Software Visualization. In
order to validate the architecture, MDV framework for
Eclipse was developed. Model Driven Visualization
(MDV) is intended to address the customization of
information visualization tools, especially in the program
comprehension domain. The MDV architecture describes
how to leverage the work done in the Model Driven
Engineering community and apply it to the problem of
designing visualizations tools.

The Graphical Modeling Framework(GMF)[12] project
for
eclipse has facilities to allow modelers to define graphical
editors for their data. These graphical editors can be used
as viewers, however, the views they support are limited to

simple graphs with containers. The GMF project currently
lacks the ability to specify “Query Result” visualizations.

An Open Framework for [10] visual mining of CVS based
software repositories has three major aspects are data
extraction, analysis and visualization. An approach was
proposed for CVS data extraction and analysis. CVS data
acquisition mediator used to extract the data from CVS
repositories. Analysis techniques are used to analyze the
raw data retrieved from the CVS repositories from CVS
Querying. It also provides the comparison of the open
source projects. CVSgraph is a software tool used to
visualizing project at file level. This open framework does
not provide the visualization of models, it provides for
program at file level only.

CVSscan[11] is a tool in which a new approach for
visualization of software evolution was developed. The
main audience targeted here is the software maintenance
community. The main goal is to provide support for
program and process understanding. This approach uses
multiple correlated views on the evolution of a software
project. The overall evolution of code structure, semantics,
and attributes are integrated into an orchestrated
environment to offer detail-on-demand. And also provides
the code text display that gives a detailed view on both the
composition of a fragment of code and its evolution in
time. It is focused on the evolution of individual files.

2.1 Motivation for Framework and its Application

There are number of frameworks exists in the literature for
comparison and assessment of the various CASE tools.
Comparison of these tools is essential to understand their
differences, to ease their replication studies, and to
discover what tools are lacking. Such a comparison is
difficult because there is no well-defined comprehensive
and common comparative study for different category of
the tools. For design recovery tools a comparative
framework [14] was derived for comparison. This
framework comprises eight concerns, which were further
divided into fifty three criteria and which were applied on
ten design recovery tools successfully. Another
framework [7] also exists in the literature for comparison
and assessment of the software architecture visualization
tools. Software architecture is the gross structure of a
system; as
such, it presents a different set of problems for
visualization than those of visualizing the software at a
lower level of abstraction. Six visualization tools were
evaluated in this framework. This framework consists of
seven Key areas and 31 Key features, for the assessment
of software architecture visualization tools. Both the

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 3, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

49

frameworks applied against the stakeholders concerns.
From this analysis it is easy to know that how a selected
tool satisfies the stakeholder concerns. Thus the
motivation for this work lies in above mentioned two
frameworks. Combining the visualization approach with
MoDSE is essential to understand the evolution of models
in a better way. Large numbers of visualization tools are
available in the literature. Among them many tools support
the evolution at source code level, data level. This work
aims to find out the visualization tools which support the
visualization at model level. As such there is no
framework exists in the literature to evaluate tools which
are useful for the MoDSE Visualization and also to
understand the evolution of the models with respect to
stakeholder perspectives. Hence this paper aims to
evaluate the already proposed framework for visualization
of MoDSE.

3. Framework Summary

This section provides the summary of the already
proposed framework for Model-Driven Software
Evolution visualization in [8].

The framework has seven key areas (views) for visualizing
MoDSE: Context View, Inter-Model View, City View,
Metric View, Transformation View, Evolution View and
Evaluation view. These seven views are derived based on
the viewpoints and were discussed in detail [8]. The
dimensions proposed in the framework are not proposed
as formal representation of the characteristics of MoDSE,
but are necessary for discussion about, and evaluation of,
such dimensions with respect to stakeholders and tools
which they use. The Goal/Question/Metric (GQM)
paradigm [9] is used to identify the questions and then to
enable the formation of framework features.

The primary goal of the framework is to assess and
understand the evolution of the models in model driven
software evolution. The framework is derived from an
extensive analysis of the literature in the area of software
visualization with special emphasis on model driven
software evolution. Each of the seven views is a
conceptual goal which the framework must satisfy. It is
this that makes the application of the GQM Paradigm [13]
straightforward.

Framework summary with its goals, questions are given in
Table.1 First column represents the key features
(questions) which are abbreviated with view names.
Second column represents the key areas (views). The
responses for these questions will be the values used in the
Table 2.

Table 1: Framework Summary

Key
Features

Key Areas

 Key Area 1 : Context View (CV)
CV 1
CV 2

CV 3

Does the visualization provide context of a model?
Does the visualization provide the scope of a model or
model element?
Does the visualization express the model completely
including all its surrounding elements?

 Key Area 2: Inter-Model View (IMV)
IMV 1

IMV 2

IMV 3

Does the visualization provide the dependencies between
the models and model elements?
Does the visualization provide the indirect dependencies
between the models and model elements?
Does the visualization provide the integration of the two
or more models?

 Key Area 3 : City View (CiV)
CiV 1

CiV 2

Does the visualization provide the extendibility of the
models in a software system?
Does the visualization provide the traceability of a model
or model element?

 Key Area 4 : Metric View (MeV)
MeV 1

MeV 2

MeV 3

MeV 4

Does the visualization provide the metrics to estimate the
impact analysis of the models during evolution?
Does the visualization provide the visualization
techniques to know the evolution of the models?
Does the visualization provide the metric values to know
the evolution of the models?
Does the metrics provide the knowledge about the quality
and complexity of the models during evolution?

 Key Area 5 : Transformation View (TV)
TV 1

TV 2

TV 3
TV4
TV5

Does the visualization provide any kind of
transformation?
Does the visualization provide the knowledge about the
transformation of the models?
Does the visualization provide the mapping of models?
Does it provide transformation rules?
Does it provide transformation language?

 Key Area 6 : Evolution View (EV)
EV 1

EV 2

Does the visualization provide trends and causes for
evolution of models?
Does the visualization provide the dimension of
evolution?

 Key Area 7 : Evaluation View (EaV)
EaV 1

EaV 2
EaV 3

Does the visualization provide the evolution trends and
techniques?
Does the visualization causes for the evolution of models?
Does the visualization facilitate the stakeholders’
feedback?

4. Application of the Framework

This section describes an application of the framework.
For this purpose tools which are mainly research oriented
and non commercial tools are considered. These tools are
also having the features which are necessary for
visualization of models. The expensive commercial tools
such IBM rational Rose Suite, Enterprise architect etc. are
not considered here. The following sub sections briefly

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 3, January 2010
www.IJCSI.org

50

describe the features of the tools. And the comparison of
those tools and responses are shown in the Table 3.

 Table 2: Possible Responses (Metrics)

4.1 Argo UML Tool

ArgoUML (ARUML) is a free UML diagramming tool
[5], [17] released under the open source BSD License. It is
a java based UML tool that helps users to design using
UML. It is able to create and save most of the nine
standard UML diagrams. ArgoUML not only a free UML
modeling tool, it is also an open source project that any
one can contribute to extend or to customize the features
of a tool. It is a powerful yet easy-to-use interactive,
graphical software design environment that supports the
design, development and documentation of Object-
Oriented software applications. The users of Argo UML
are software designers, architects, software developers,
business analysts, system analysts and other professionals
involved in the analysis, design and development of
software applications. First version released in April 1998
and the recent version is 0.26.2 in November 2008.All
nine UML 1.4 diagrams supported and it also supports
many features but the major weakness is no support for
UML 2. The four key features that make ArgoUML
different from other tools are: it makes use of ideas from
cognitive psychology, it is based on open standards and it
is 100% pure java is used.

Explorer View in ArgoUML has 9 perspectives which
satisfy the features of the framework such as CV1, CV2,
CV3, IMV1, and IMV2. This is indicated with the
response ‘Y’ in the Table 3. Integration of the models
(IMV3) is not supported so, the response is ‘N’. Features
such as CiV1, CiV2 are not mainly supported because as
such there is no geographical view of a complete project
but it provides all the models in a project in a hierarchal
tree view. Hence the response is ‘N?’ in the Table 3. All
the features in a (Mev1, MeV2, MeV3, and MeV4) Metric
View are not applicable here because it is not intended to
calculate the metric values of the models. This is shown as
‘NA’ response. The response for the Transformation
features such as TV1, TV2, and TV3 is ‘N?’ because
transformation from model to code is partially available
not the other kinds of transformation such as model to
model or code to model. Transformation rules and
language (TV4 and TV5) is not applicable, so the response

is ‘NA’. Compare to other two tools, ArgoUML is
particularly inspired by the three theories within Cognitive
Psychology. So, the designers of a complex system do not
conceive a design fully formed. Instead, they must
construct a partial design, evaluate, reflect on, and revise
it, until they are ready to extend it further. So, the
responses for the features are shown in the Table 3 as EV1
– Y? , EV2 – N, EaV1 – N, Eav2 – Y? , EaV3 – Y.

Response Meaning
Y
Y?
N?
N
NA
?

Full support
Mainly supported
Mainly not supported
No support
Not applicable (not in the scope)
Unable to determine

4.2 MetricView Evolution Tool

MetricView Evolution (MVE) tool [2], [3], [15] is a
research activity within Empirical Analysis of
Architecture and Design Quality Project (EmpAnAda).
This Project is an activity of the System Architecture and
Networking group at the Eindhoven University of
Technology, Netherlands. MetricView Evolution tool
provides features such as metrics calculations within the
tool, several views to explore and navigate UML models,
visualization of evolution data. This is an extension of
MetricView tool which includes more features.
MetricView Evolution also supports analysis of model
quality and model evolution. Due to some limitations in
this research activity and since the entire UML
specification is quite complex so, not all the information
available in each diagram. Only the necessary elements are
extracted and displayed in this tool. Even with limitations
the reasons to select this tool is research activity, easily
downloadable and features are closer to the framework.

MetricView Evolution tool has full support (Y) for the key
features such as CV1, CV2, CV3, IMV1, IMV2, CiV1,
CiV2, MeV1, MeV2, MeV3, EV1, EaV1, and EaV2.
Feature IMV3 (i.e. integration of models) is not supported
but there is a scope for integrating the models. Features
such as TV1, TV2, and TV3 are not applicable because
these features are not in the scope of the tool. And the
purpose of the MetricView Evolution tool is for quality
and evolution of UML models not for transformation of
models like model to model, code to model and model to
code. EV2 and EaV2 features are not mainly supported
(N?) because the purpose of the evolution view in the tool
is to enable the user to spot the trends in the values of
quality attributes and/or metrics at multiple abstraction
levels not for multiple dimensions of evolution. The
responses for the stakeholders concerns(key features or
questions) are shown in the Table 3 in terms of Y, N, Y?,
N? and NA.

4.3 Visual Paradigm for UML

Visual Paradigm [16] for UML 6.4 (VP-UML) is a
powerful visual UML CASE tool. It is designed for a wide
range of users, including software engineers, system

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 3, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

51

analysts, business analysts, and system architects like who
are interested in building software systems reliably
through the use of Object-Oriented approach. VP-UML
can run in different operating systems. It supports more
than 20 diagram types including UML 2.1, BPMN,
SysML, ERD, DFD and more. Different editions are also
available such as Enterprise, Professional, Standard,
Modeler, and Personal are commercial editions.
Community and Viewer are non-commercial editions. It
supports a rich array of tools. One special feature is
Resource-Centric interface, which lets the user access
modeling tools easily without referring back and forth
from the workspace to various toolbars. Users can draw
diagrams or models as with a pen and paper, executing
complicated modifications with just a click and drag,
creating completely visual environment

It is observed that the names of the features in VP-UML
differ from the features of the framework. But the purpose
and intention of the features are same. So, they have full
support for those features that labeled as ‘Y’ in the Table
3. Transformation of the models such as model to model,
model to code and code to model available in the tool but
transformation rules and languages are not available.
Hence, features as TV4, TV5 are not applicable (NA).
MeV1,MeV2, MeV3, MeV4 features for metrics of the
models and which are not in the VP-UML tool that is
shown in the Table 3 as ‘ NA’. Features such as EV2,
EaV3 are not mainly supported in the tool i.e. shown in
the Table 3 as ‘N?’ Visualization of the models by using
different diagrams is possible but the techniques are not
available. So, the response is ‘N?’ for Mev2.
Stakeholder’s feedback (EaV3-N?) is not mainly provided,
but the user can store their opinions/ideas about the
evolution of the models.

5. Conclusions and Future work

An application of the framework for visualizing Model-
Driven Software Evolution has been presented. The
research oriented, non commercial tools such as
ArgoUML, MetricView Evolution, and Visual Paradigm
for UML are considered for the framework’s application.
These three tools have compared successfully under this
common framework. From this comparison it is observed
that a single tool does not consist of all the features of the
framework and each tool has its own intensions and
purposes. But, by using these three tools all the features
are satisfied except four features. Among these two
features such as ‘multiple dimensions of evolution’, ‘stake
holder’s feedback’ are partially supported by the two
tools. But, ArgoUML has provided the feature such as
‘Cognitive Psychology’ which provides freedom for a
stakeholder (designer) to make design decisions, to resolve

design problems and many design issues and rules is also
available. The remaining two features like ‘transformation
rules’ and ‘transformation languages’ are not applicable
and not supported by these three tools. By comparing the
tools under this common framework a stakeholder can
easily understand and asses the tools and can find out the
flaws in a particular tool.

 From the comparison of various features of the
three tools it is observed that still there is a need to
consider few more possible visualization/CASE tools
which are exists in the literature. It is possible to check the
unsatisfied features of the three tools can be satisfied by
the other tools and also possible to know the role of the
visualization tools in MoDSE. From the comparison of
number possible tools framework can be strengthen
further. Another application of the framework is to
evaluate stakeholder concerns considered in the
framework against the concerns of the software
practitioners (stakeholders) from diverse organizations.
These are the subjects of the future work.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 3, January 2010
www.IJCSI.org

52

Table 3: Framework Application

References
[1] Arie van Deursen, Eelco Visser, and Jos Warmer.: ‘Model-
Driven Software Evolution: A Research Agenda’, In Dalila
Tamzalit (Eds.), Proceedings 1st International Workshop on
Model-Driven Software Evolution, University of Nantes, 2007.
pp. 41-49.
[2] Christian F.J. Lange, Martijn A.M. Wijins, Michel R.V.
Chaudron.: ‘Metric View Evolution: UML-based Views for
Monitoring Model Evolution and Quality’, IEEE 11th European
Conference on Software maintenance and Reengineering
(CSMR’07), Amsterdam, the Netherlands, March 2007, pp 327-
328.
[3] C.F.J. Lange, M.A.M Wijns, M.R.V Chaudron, ‘ A
Visualization Framework for Task-Oriented Modeling using
UML’, Proceedings of 40th Hawaii International Conference on
System Sciences (HICSS’07), Hawaii, January 2007,pp 289a .
[4] Jacques Saraydaryan, Fatiha BenalilI and Stéphane Ubeda:’
Comprehensive Security Framework for Global Threads
analysis’, IJCSI International Journal of Computer Science
Issues, Vol. 2, 2009 pp18-32.
[5]Jason Elliot Robbins, ‘Cognitive Support Features for
Software Development Tools’, Ph.D Thesis Report, University
of California, Irvine, 1999.
[6] Jonathan I.Maletic, Andrian Marcus, Louis Feng., ‘Source
Viewer 3D (sv3D) - A Framework for Software Visualization’,
Proceedings of the 25th International Conference on Software
engineering (ICSE’03), 2003.
[7] Keith Gallegher, Andrew Hatch, and Malcolm Munro,
‘Software Architecture Visualization: An evaluation Framework

and its Application’, IEEE Transactions on Software
engineering, Vol. 34, No.2, March/April 2008, pp. 260-270.
[8] K.Madhavi, A.Anand Rao, ‘A Framework for Visualizing
Model-driven Software Evolution’, IEEE International Advanced
Computing Conference (IACC’09), March 2009, Patiala, Punjab,
India, pp 1785-1790. Published in IEEE Xplore.
[9] K.Madhavi, A.Anand Rao, ’Model-Driven Software
Evolution- The Multiple Views’, International MultiConference
of Engineers and Computer Scientists (IMECS 2009), March
2009, Hong Kong, pp 1089-1094.
[10] Lucian Voinea, Alexandru Telea.:’An Open Framework for
CVS Repository querying, analysis and Visualization’,
Proceedings of the international workshop on Mining software
repositories, 2006, pp 33 – 39.
[11]Lucian Voinea, Alex Telea and Jarke J.Van wijk, ‘CVSscan:
Visualization of code Evolution’, Proceedings of the ACM
symposium on Software visualization, 2005, pp 47 – 56.
[12]Richard Granback.: ‘Graphical Modeling framework’,
Borland Developer Conference Proceedings, 2005.
[13]V. Basili, G. Caldiera, and H.D Rombach, ‘The Goal
Question Metric Paradigm’, Encyclopedia of Software Eng.,
vol.2, John Wiley & Sons, 1994, pp.528-532.
[14]Yann-Gael Gueheneuc, Kim Mens, Roel Wuyts,
‘Comparative Framework for Design recovery Tools’, 10th
European conference on Software Maintenance and
Reengineering (CSMR 2006), Bari, Italy, March 206, pp
123-134.
[15]http://www.win.tue.nl/empanada/metricview/

Key
Features

Key Areas ARUML MVE VP
U

ML
 Context View (CV)

CV1

Context of a model Y Y Y

CV2

Scope of a model or
model element

Y Y Y

CV3 Express the model
completely including all
its surrounding elements

Y Y Y

 Inter-Model View
(IMV)

IMV1

Dependencies between
the models and model
elements

Y Y Y

IMV2

Indirect dependencies
between the models and
model elements

Y Y Y

IMV3 Integration of the two or
more models

N N Y

 City View (CiV)

CiV1 Extendibility of the
models

N? Y Y

CiV2 Traceability of a model
or model element?

N? Y Y

 Metric View (MeV)

MeV1

Metrics to estimate the
impact analysis of the
models during evolution

NA Y NA

MeV2

Visualization techniques
for the evolution
models

NA Y N?

MeV3

Metric values to know
the evolution of the
models

NA Y NA

MeV4 Metrics for quality and
complexity of the model

NA Y? NA

 Transformation View
(TV)

TV1 Kind of transformation N? NA Y

TV2

Knowledge about the
transformation of the
models

N? NA Y

TV3

Mapping of the models N? N Y?

TV4

Transformation Rules NA NA NA

TV5 Transformation
Language

NA NA NA

 Evolution View (EV)
EV1

Trends and causes for
evolution of models

Y? Y NA

EV2 Multiple dimensions of
evolution

N N? N?

 Evaluation View (EaV)

EaV1 Evolution trends and
techniques

N Y NA

EaV2 Causes for the evolution
of models

Y? Y NA

EaV3 Stakeholders feedback Y N? N?

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 3, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

53

(Accessed in March 2006).
[16] www.visual-paradigm.com accessed October 2008
[17] www.argouml.org accessed 2000.

Dr. Anand Rao Akepogu. recieved B.Sc (M.P.C) degree from Sri
VENKATESWARA University, Andhra Pradesh, India. He received
B.Tech degree in Computer Science & Engineering from University
of Hyderabad, Andhra Pradesh, India and M.Tech degree in A.I &
Robotics from University of Hyderabad, Andhra Pradesh, India. He
received PhD degree from Indian Institute of Technology, Madras,
India. He is currently working as a Professor & HOD of Computer
Science & Engineering Department and also as a Vice-Principal of
JNTU College of Engineering, Anantapur, Jawaharlal Nehru
technological University, Andhra Pradesh, India. Dr. Rao published
more than twenty research papers in international journals and
conferences. His main research interest includes software
engineering and data mining.

Madhavi karanam. recieved B.E degree in Computer Science and
Engineering from Kuvempu University, Karanataka, India and
M.Tech degree in Software Engineering from Jawaharlal Nehru
Technological University, Andhra Pradesh, India. Currrently she is
pursuing PhD from Jawaharlal Nehru technological University,
Andhra Pradesh, India. Madhavi published six research papers in
national and international conferences. Her main research interest
includes software visualization, model driven development and
software engineering. She is a graduate member of the IEEE
Computer Society.

