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Abstract 

This paper describes a new method for the synthesis of planar 
antenna arrays using fuzzy genetic algorithms (FGAs) by 
optimizing phase excitation coefficients to best meet a desired 
radiation pattern. We present the application of a rigorous  
optimization technique based on fuzzy genetic algorithms 
(FGAs), the optimizing algorithm is obtained by adjusting 
control parameters of a standard version of genetic algorithm 
(SGAs) using a fuzzy controller (FLC) depending on the best 
individual fitness and the population diversity measurements 
(PDM). 
The presented optimization algorithms were previously checked 
on specific mathematical test function and show their superior 
capabilities with respect to the standard version (SGAs). 
A planar array with rectangular cells using a probe feed is 
considered. Included example using FGA demonstrates the good 
agreement between the desired and calculated radiation patterns 
than those obtained by a SGA. 
Keywords:fuzzy genetic algorithms, planar array, 
synthesis, population diversity measurements, fuzzy 
controller. 

1. Introduction 

Planar antenna arrays are fundamental components of 
radar and wireless communication systems [1]. Their 
performance heavily influences the overall system’s 
efficiency and suitable design methods are necessary. 
The phase-only methods are of particular interest in 
antenna array synthesis as phase shifters are used to 
control the direction of the main beam. These methods 
include in general nonlinear optimization algorithms. 
The genetic algorithms (GAs) have been widely used in 
electromagnetic problems optimization, and particularly 
for the synthesis of antenna arrays. They have proved to 
be a useful and powerful alternative to traditional 
optimization techniques [2-7] when handling with  
 
 

multidimensional, multimodal optimization problems and 
their success are related to their versatility, robustness and 
their ability to optimize non differentiable cost function 
[2-7]. 
However, GA has also some demerits, such us poor local 
searching, premature converging as well as slow 
convergence speed. Adaptive genetic algorithms (AGAs) 
have been developed to overcome these problems, where 
their control parameters are adjusted according to the 
variation of the environment in which the GAs are run. 
We introduce the well-known performances of the fuzzy 
set theory to adjust control parameters of GAs depending 
on current performance measures of GAs  such us : 
maximum, average, minimum fitness and on the diversity 
of the population(PD). 
We present in this paper the synthesis of the complex 
radiation pattern of a planar antenna array with probe feed 
by only optimizing the phase excitation coefficients, the 
desired radiation pattern is specified by a narrow beam 
pattern with a beam width of 8 degrees and a maximum 
side lobe levels of -20DB pointed at 10°.  
Section 2 describes the fuzzy genetic algorithms (FGAs), 
the design of a fuzzy controller is discussed to adjust 
crossover and mutation probabilities according to the 
population diversity measurements and the best fitness 
individual.   Section 3 shows the synthesis problem of a 
planar antenna array with rectangular cells using FGAs by 
optimization of the phase excitation coefficients. 
Numerical results for a planar array using both the SGAs 
and FGAs are presented in section 4, to compare the 
performances obtained while introducing fuzzy techniques 
in GAs. Finally, some conclusions are drawn in section 5. 

2. Fuzzy Genetic Algorithms 

The GAs behavior is determined by the exploitation and 
exploration relationship kept throughout the GA run. This 
balance between the utilization of the whole solution space 
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and the detailed searching of some parts can be adapted to 
change of GA operators setting (selection, crossover and 
mutation). So, different genetic operators or control 
parameters values maybe necessary during the course of a 
run for inducing an optimal exploration/exploitation 
balance. For these reasons, adaptive GAs have been built 
that dynamically adjust selected control parameters or 
genetic operators during the course of evolving a solution 
[8] [9]. 
One way for designing AGAs involves the application of 
fuzzy logic controller (FLCs) [10-12] for adjusting GA 
control parameters. 
The main idea of adaptive GAs based on fuzzy controllers 
FLCs is to use a FLC whose inputs are any combination of 
GA performances measures or current control parameters 
and whose outputs are GA control parameters. Current 
performance measures of the GA are sent to the FLC, 
which computes the new control parameters values that 
will used by the GA as demonstrated by the flowchart 
shown in figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Flowchart of the fuzzy genetic algorithms (FGAs). 

FLC’s inputs should be robust measures that describe GA 
behavior and the effects of genetic setting parameters and 
genetic operators, some possible inputs were cited in 
[9][10]: diversity measures, maximum, average, minimum 
fitness. 
FLC’s outputs indicate the values of control parameters or 
changes in these parameters, the following outputs were 

reported in [9] [10]: mutation probability (pm), crossover 
probability (pc), population size … etc. 
We have choose for FLC’s outputs the probabilities of 
crossover pc and mutation pm to realize the twin goals of 
maintaining diversity in population and sustaining the 
convergence capacity of the GA[13] [14]. 
The significance of pc and pm in controlling GA 
performance has long been acknowledged in GA research 
[6] [7]. Several studies, both empirical [15] [16] and 
theoretical [17] have been devoted to identify optimal 
parameter settings for GAs. The crossover probability pc 
controls the rate at which solutions are subjected to 
crossover. The higher the value of pc, the quicker are the 
new solutions introduced into the population. As pc 
increases, however, solutions can be disrupted faster than 
selection can exploit them. 
Mutation is only a secondary operator to restore genetic 
material choice. Nevertheless the choice of pm is critical to 
GA performance and has been emphasized in Dejong’s 
work [18]. Large value of pm transforms GA into  a 
purely random search algorithm, while some mutation is 
required to prevent the premature convergence of the GA 
to suboptimal solutions. 

Initialisation 
Random generation of  P chromosomes 

The  FLC   design takes into account the PDM and a 
performance measure of GAs, in this paper the FLC has 

three inputs ( , gwD max/ ff  and  Number) and two 

outputs (pc and pm) as indicated in the figure 2. 

Generation=1

Evaluate fitness function for the 

 Fuzzy logic controller (FLC) 
Adjusting Pc and Pm

Expert 
 Where: 

 
           :   is the average fitness of the current population.  Selection, Crossover

maxf : is the fitness of the optimal individual.  
gwD   : is the gene inner diversity. 

 
 
 
 
 
 
 

Fig. 2  Structure of the fuzzy logic controller FLC. 

Let us consider a given population with M individuals 
(p1 ,…, pM) where each individual is represented by a 
binary string of  l  bits, the PDM can be described by 
means of the gene inner  diversity given by equation 1: 
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gwD  represents the genetic drift degree and evolution 

ability of current population. max/ ff  is used to judge 
whether the current PD is useful [12], if it’s near to 1, 
convergence has been reached, whereas if it’s near to 0, 
the population shows a high level of diversity[10]. 
Number is used to record the frequency of the largest 
fitness value that is not changed. 
The input variables , gwD max/ ff  and Number to be 
included respectively in the ranges : [0 , 0.25],  [0 , 1] and 
[0 , 30].  
Once the inputs and outputs of the FLC are defined, we 
must drive the membership functions and the fuzzy rules. 
More details about the design of FLC are given in [12].  

3. Synthesis of Planar Antenna Arrays 

We develop in this paper a synthesis of planar antenna 
array with probe feed using the FGAs discussed in the 
previous section. 
Let us consider a planar antenna array constituted of MxN  
equally spaced rectangular antenna arranged in a regular 
rectangular array in the x-y plane, with an inter-element 
spacing of 2/λ=== dydxd  as indicated by  figure 3,  
and whose outputs are added together to provided a single 
output. Mathematically, the normalized array far-field 
pattern is given by:  
 
 

  (3) 
 
Where 
( )φθ ,f : Represents the radiation pattern of an element. 

mnI : Amplitude coefficient at element (m, n). 

mnψ : Phase coefficient at element (m, n). 

0k : Wave number. 
 
If we consider an array with separable distribution, then 
the array factor is the product of two linear arrays 
associated with the row and column direction of this 
planar, which can be expressed in the form (4): 
 

 

(4) 

Fig. 3  Planar antennas array fed by coax. 

 
e use the FGAs  to find the complex excitation 
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Fig. 4  Plot of the desired pattern specification (for 10° main beam). 

Where it is assumed that a number of samples of the 

ind a relationship between the GAs and 

Table 1: The relationship between elements of GAs and arrays. 
Gen

pattern, di in dB, are taken in the beam region and the 
sidelobe region and that the number of samples in the 
beam region is equal to 2S+1. An arbitrary weight w1 is 
used. The goal of function (7) is to maximize the 
difference between the average value in the beam and the 
highest sidelobe. 
First we have to f
the array. In the case of a coded GA, each element of the 
array is represented by a string of bits which gives the 
complex excitation of the element; hence each element is 
characterized by its phase excitations. This relationship is 
shown in table 1. 

etic parameters Antennas array 
Gene Bits chain(string): (phase) 
Chromosome One element of array 
Individual One array 
Population Several arrays 

4. Numerical Results 

In our simulation, we have used a population size of 40 for 

array, 

(8) 

e have adopted a desired radiation pattern specified by a 

5 we present the result of planar array 

 approaching the global optimal of 

Fig. 5  Result of a planar array synthesis with 8x16 rectangular microstrip 
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We have chosen for simplification a symmetrical 
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and adopted an antisymetrical phases for elements, which 
can be resumed by equation (7): 
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W
narrow beam pointed at 10 degrees with a sidelobe level of 
-20dB. Figures 5 to 8 show the synthesis result of a probe-
fed planar array constituted by 8x16 half wavelength 
spaced rectangular microstrip antennas with 0.906cm 
width and 1.186cm long working at the frequency of 
10GHz.    
In figure 
optimization by phase excitation coefficients using both 
SGAs and FGAs. It is clearly seen that the radiation 
pattern obtained by FGAs meet better the desired pattern 
than the obtained by SGAs. The sidelobe level obtained by 
FGAs optimization (-26DB) are much better than in the 
case of SGAs (-20DB). 
From figure 6, the speed
FGA is much quickly than that of SGA, and the fitness 
values of the best individuals of FGA are almost higher 
than that of SGA in every population. For each generation 
the probabilities pc and pm are adjusted according to the 
response of the fuzzy controller, and shown in the figures 
7 and 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

antennas applying both SGAs and FGAs. 
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Fig. 6 Comparison between fitness functions obtained by the two 

 

 

Fig. 7 Adjusting  pc during GAs run. 

 

Fig.  8  Adjusting  pm during GAs run. 

5. Conclusions 

A rigorous method for the synthesis of planar antenna 
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array using AGAs integrating a FLC by optimizing only 
phase excitation coefficients has been presented.  The GAs 
behavior is strongly determined by the balance between 
exploiting what already works best and exploring 
possibilities that might eventually evolve into something 
even better. 
The balance 
exploitation) of the GAs is dictated by the values of pc and 
pm. We have adopted the variation of  pc and pm 
according to the response obtained by a FLC which 

depends on the PDM and a measure of the convergence by 
means of the ratio between the best fitness and average 
fitness. With the approach of adaptive probabilities of 
crossover and mutation, we also provide a solution to the 
problem of choosing the optimal values of the 
probabilities of crossover and mutation for the GA. 
From the simulating results, it has been shown that  
speed approaching the global optimal of FGA is much 
quickly than that of SGA, and the fitness values of the best 
individuals of FGA are almost higher than that of SGA in 
every population.  
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