
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 2, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

42

A Strategy to enable Prefix of Multicast VoD
through dynamic buffer allocation

 Dr.T.R.GopalaKrishnan nair1 and P Jayarekha 2

1 Director Research Industry and Incubation Centre

DSI ,Bangalore, India

2 Dept Of ISE BMS College of Engineering,
Research Scholar Dr.MGR university,

Abstract
In this paper we have proposed a dynamic buffer
allocation algorithm for the prefix, based on the popularity
of the videos. More cache blocks are allocated for most
popular videos and a few cache blocks are allocated for
less popular videos. Buffer utilization is also maximized
irrespective of the load on the Video-on-Demand system.
Overload can lead the server getting slowed down. By
storing the first few seconds of popular video clips, a
multimedia local server can shield the users from the
delay, throughput, and loss properties of the path between
the local server and the central server. The key idea of
controlled multicast is used to allow clients to share a
segment of a video stream even when the requests arrive at
different times. This dynamic buffer allocation algorithm
is simulated and its performance is evaluated based on the
buffer utilization by multimedia servers and average
buffer allocation for the most popular videos. Our
simulation results shows efficient utilization of network
bandwidth and reduced hard disk utilization hence
resulting in increase in the number of requests being
served.

Keywords: Multicast transmission, Interval caching,
prefix caching, Dynamic buffer Allocation.

1. Introduction

Recent advances in high speed networks and
communication technologies have made it possible to
provide an on-line access to a variety of information
sources such as reference books, journals, newspapers
images and video clips. The two architectures available for
servicing the client requests are Client-Pull and Server-
Push. The Client-Pull type server, streams the data to the
client in response to the client’s explicit request. Here the
client has to determine the playback time, estimate the
time to client’s request time for the frame fetch. Where as

in Server-Push, the server serves the client implicitly in
response to the request of the client. The server is
responsible for streaming the data in rounds and keeps
track of the status of each stream. It ensures all the frames
are streamed on time within the round time.
 The challenges faced in designing the multimedia
streaming servers are that the multimedia data requires
totally different techniques for their organization and
management when compared with the numeric and the
text. The most critical of these is the continuity
requirement. It becomes the responsibility of the
multimedia streaming server to ensure that recording and
retrieval of media streams with respect to disks proceed at
real-time rates [8]. Designing a dedicated multimedia
server that optimizes the client request service time is a
matter of challenge.
 Multimedia servers are connected to the clients via ATM
(Asynchronous Transfer Mode) networks. Here the total
bandwidth from the storage devices of the server via the
network to the clients is fixed. A multimedia storage
server can support only a limited number of clients
simultaneously. The major concern for a server is to
provide service with a good quality to a numerous groups
of clients keeping the server and its network resources
within feasible limits. An admission control algorithm
determines the acceptance or rejection of a new request. It
checks if the available bandwidth is sufficient for the total
bandwidth required by the streams currently being
serviced and the bandwidth requirement of the new
request [15]. Our approach is exclusively for the clients
who read from the disk and not write In this paper we
have proposed dynamic buffer allocation strategy based on
popularity-aware interval caching for prefix, which stores
only the prefix of most popular multimedia objects and it
batches the requests without the QoS violations of the
request and does multicast transmission for all the clients.
This reduces the overhead of the hard disk; it increases the
number of concurrent users and utilizes the network and
disk bandwidth efficiently.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 2, January 2010
www.IJCSI.org

43

The organization of the paper is as follows.
Section 2 is a review on some of the existing works on
different Multicast, Popularity and Prefix aware interval
caching scheme. Section 3 describes a Distributed VoD
architecture Section 4 presents the importance of dynamic
buffer allocation as compared with static buffer allocation.
Section 5 presents a Multicast VoD Architecture. Section
6 presents the proposed algorithm. Section 7 the
simulation results and discussion are presented. The
conclusion and the future work are presented in section 8.

2. Related Work
To improve the multimedia streaming services, many
studies on the caching of the multimedia streaming objects
have recently been studied.
Among this Dan and Sitaram proposed a caching scheme
for VoD servers named interval caching (IC), which
exploits the temporal locality of accessing the same
multimedia object consecutively [3]. The interval caching
scheme consist of all consecutive requests pairs by the
increasing order of memory space requirement, and then
allocates memory space to as many of the consecutive
pairs as possible. When an interval is cached, the
following stream could read the data without any disk
access since it will be directly served from the buffer
cache.
Nachum et al. proposed a Real-time multicast
Communication admission control procedure [1,12],
which considers requests of multiple streams from
multiple destinations and resolve contention when users
requests exceeds the available network resources.
However, the interval caching based on popularity and to
retain the prefix, the initial portion of the video as opposed
to later is not considered.
Ohhoon Kwon [2] has proposed a popularity and Prefix
Aware Interval caching for multimedia streaming servers,
but they have not extended their work on the admission
control and increasing the number of concurrent users by
multicast transmission.
Mcache [13] proposes a technique to remove the initial
payouts delays of clients in multicast-based video
streaming. While requests are batched together for a
multicast, clients can receive the prefix of a requested
movie clip from caches located in their own regions. But
we have extended the work by adding a dynamic buffer
allocation scheme.

3. Distributed VoD System

Figure 1: Distributed VoD System

In a distributed configuration there is one central server
that stores all the content with smaller servers located near
the network edges that are used to store high demand
content (Figure 1). When a client requests that a particular
video be played, the video server responsible for the
request reserves sufficient processing capacity and
network bandwidth for the video stream to guarantee
continuous playback of the video. Transmission of video
streams requires high network bandwidth and this can be
very expensive, especially in the core section of the
network.

4. Dynamic buffer allocation
Video data is provided to users by the VoD system. There
are two important characteristics of video data. First, the
amount of video data is voluminous. Second, video data
must be continuously provided to the user.
The former requires that VoD systems use buffers for
managing data by block units because systems cannot
store the entire video data in memory. The latter mandates
buffer management of VoD systems to retrieve new data
blocks into the buffer before a user request uses up the
data in the buffer. Minimizing memory requirement and
initial latency is an important factor in buffer management
of VoD [9].
Initial latency is the duration between the arrival of a user
request and the arrival of the requested video data in the
server's main memory. By dynamically allocating memory
blocks based on popularity a number of concurrent user
requests can be serviced with the same amount of
memory.
To minimize memory requirement and initial latency
several buffer scheduling methods has been proposed
[10,11]. The buffer scheduling method determines the
order of filling data buffers allocated to user requests.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 2, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

44

These methods use static buffer allocation to allocate
buffers to user requests. The static buffer allocation
scheme determines the minimum buffer size based on the
assumption that the system is in the fully loaded state,
i.e.,the system services the maximum number of user
requests that can be supported. The system consistently
allocates this buffer size to all user requests regardless of
the system's load. VoD systems must allocate larger
buffers to user requests as the number of user requests in
service increases.
 The static scheme increases memory requirements and
initial latency of systems [9,10], since it has a
disadvantage that it uses memory inefficiently by
allocating a large buffer than necessary, when the system
is not in the fully loaded state.

5. The Architecture of Multicast VoD System
In video delivery system the popularity and access pattern
plays an important role. As different videos are requested
at different rates and at different times, videos are usually
divided into the most popular and less popular requests.
The top 10-20 videos are known to constitute 60-80% of
the total demand.

Figure 2. A Multicast VoD System

So, it is crucial to improve the service efficiency of most
popular videos. Thus, requests by multiple clients for the
same video arriving within a short time interval can be
batched together in the cache and serviced using a single
stream. This is referred to as batching.
The Multicast facility of modern communication networks
offers an efficient means of one-to-many data transmission
as shown in figure 2. The basic idea is to avoid
transmitting the same packet more than once. Since all the
local servers are connected to the content servers, as the
popularity of any video increases the number requests
arriving from the local server to the content server also
increases [5]. The same copy of prefix of the video can be

multicasted to all the local servers and sometimes directly
to the clients by batching the entire request together with a
small start up delay due to batching. This significantly
improves the VoD performance, because it reduces the
required network bandwidth.
 All hosts that join a multicast group will receive the
multicast traffic assuming that multicasting is supported in
general. The idea behind controlled multicast framework
is to control the multicast receivers and sources for certain
multicast groups. This control can be done by the internet
service operator or it can be done based on application
specific needs e.g. by the multicast source [14].

In spite of these advantages, Multicast VoD has the
following challenges
It is difficult to maintain the VCR (Video Cassette
Recording) like support. Batching makes the clients
arriving at different times to share a multicast stream,
which may incur long service latency. The routers should
support the multicast of VoD.
Some of these challenges are overcome in this paper.
Usually VCR-like support is not expected from the proxy
servers. The service latency problem is overcome by
starting the service to the whole batch within the deadline
constraints of the first request as shown in figure 3.

 Figure 3. Batching of requests

This paper proposes a dynamic buffer allocation scheme, a
novel approach for the buffer allocation that dynamically
allocates the minimum buffer size in the completely
present state. The inherent difficulty in allocating the
buffer in the dynamic buffer allocation scheme is that the
size of the buffer currently being allocated is dependent on
the number of and size of the buffers to be allocated in the
future, which are yet to be determined. We provide a
solution to this problem using the popularity based
algorithm to be described in Section VI. The advantages of
this scheme are as follows: First, this scheme removes the
static buffer allocation scheme’s problem of allocating
unnecessarily large buffers. Second, by allocating the
minimum buffer size for least popular video’s prefix, our
scheme significantly improves the average initial latency
and the average number of concurrent user requests that
can be supported. Third, this scheme is independent of
buffer scheduling methods utilizing all the buffers

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 2, January 2010
www.IJCSI.org

45

allocated. The buffer scheduling method determines the
order in which the server fills the buffers with the data.

6. Multicast and Interval Caching
Whenever the bandwidth bottleneck limits the number of
clients a multimedia streaming server can simultaneously
support, a multicast delivery with interval caching [3, 4]
becomes particularly attractive for multimedia
applications. Interval caching exploits the high skewness
in video access patterns by attempting to pair each
playback request with an immediately preceding request
for the same video that is currently being serviced from
the cache. Specifically, interval caching reuses the data
brought by a stream in servicing a closely following
stream. The two streams are called the following stream
and the preceding stream, respectively.
Only the initial portion of a media object, called the
prefix, is streamed from the server’s cache. Batching is an
approach used to exploit the memory bandwidth and to
save disk bandwidth in media servers by defining temporal
cycles called batching windows. All requests that arrive
within such a cycle are collected and at the end of the
cycle, all the requests to the same video are serviced from
the same media object saved in the cache. Upon receiving
a continuous request from the client, the server collects all
the requests within a cycle and immediately delivers the
prefix to the client at the end of the cycle. The basic
approach is the creation of a multicast group for the
delivery of a video stream to the requesting end-user. If
another user requests the same video shortly after the start
of this transmission, the request is added to the same
multicast group. This makes the cache sharable between as
many clients as possible. Half portion of the cache is used
to store only the prefix of the most popular videos.
Naturally, an increase in cache hit percentage would have
a direct bearing on the number of clients that can be
admitted and served without missing deadlines. Our
approach thus balances the time duration of a batching
window and deadline of each requested video.
 Moreover, the number of initial segments cached is
dynamically determined by the popularity of an object. It
is assumed that the latency between a client device and the
local server is negligibly small, but the latency between
the local server and the content server is relatively large
and cannot be ignored. Here, we assume that we are
dealing with only clients that are requesting the data to
retrieve from the disk and not storing to the disk.
The retrieval time directly from the server and the start up
time can be is remarkably reduced when the prefix is
directly streamed from cache. But a small latency time is
incurred while batching all the requests.
As an example, recent studies found that nearly 90 percent
of media playbacks are terminated prematurely by clients
after watching the initial portion of the video. Hence

fetching the remaining portion i.e the suffix, from the
server’s disk to the prefetch cache relays on the client’s
interest to continue to watch or not.

7. Proposed Algorithm
We have assumed a multicast transmission with interval
caching. Whenever a client request for a video, the
requested video’s prefix may be or may not be present in
the local server.
If the requested video’s prefix is present in the local
server, then the real time transmission of the video starts
immediately with the video content being streamed to the
client from the local server. If the requested video is being
streamed from the central multimedia server to the local
server, then also the real time transmission of the video
starts immediately with video content being streamed to
the client from the local server. If the requested video is
not present in the proxy server the following dynamic
buffer allocation occurs:
All the videos have an associated number (popularity)
which gives the popularity of the video based on the
number of hits. i.e. the popularity of a video is directly
proportional to the number of hits for that video. Initially
when all the blocks are free, the required number of blocks
based on the popularity for the video is allocated. If the
required number of blocks is not available, we find the
prefix present in the cache and is currently not being
streamed (completely offline) and is allocated more than
the minimum number of blocks. If the popularity of the
requested video’s prefix is more than the popularity of
lowest popular video having more than the minimum
number of blocks, then the blocks except minimum
number of blocks are deallocated from the lowest popular
completely offline video and these deallocated blocks are
allocated to the requested video. The same procedure will
be repeated considering the next least popular prefix of
video until the requested video gets required number of
blocks based on the popularity.
If we cannot find the lowest popular video which is
completely offline in the local server, then we find the
lowest popular video, which is present in the local server
and is currently being streamed and is allocated more than
minimum number of blocks. If the popularity of the
requested video is more than the popularity of lowest
popular video, which is currently being streamed having
more than minimum number of blocks, then the blocks
except minimum number of blocks are deallocated from
the lowest popular completely and then these deal located
blocks are allocated to the requested video. The same
procedure will be repeated considering the next least
popular video until the requested video gets required
number of blocks based on the popularity.
If the requested video gets at least the minimum number of
blocks then assign the allocated number of blocks. If we

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 2, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

46

cannot find the lowest popular video’s prefix which is
currently being streamed having more than minimum
number of blocks in the cache and the requested video
does not get even the minimum number of blocks then the
request is rejected.
We assume the minimum size of the cache allocation unit
as c, and all allocations are in multiples of this unit. It can
be one bit or minute’s worth of data, etc. We express the
size of video and the prefix cache size as a multiple of a
unit c. Video has playback bandwidth bi bps, Li length
seconds, and size ni units,
nic= bi Li. We assume that the cache can store storage
vector V =(v1,v2,v3….vn) specifies that a prefix of length
vi seconds for each video is cached at the proxy. Note that
the prefix videos cached at the proxy cannot exceed the
storage capacity of the proxy.

Algorithm

 When a request Run for prefix arrives at time t
 If (No. of cache blocks free > the no. of cache blocks
required by Run based on the popularity)
 {
 Assign the required no. of cache blocks
 to Rn.
 }
 else
 {
 Assign the available no. of cache blocks
 to Rn.
 Identify the set of request {Ri} for a prefix interval
caching with multicast group which are completely offline
having more than minblks
 If (found) (allocate the cache blocks to Rn)
 While(cache blocks not completely
 allocated to Rn based on popularity
 && still there are some videos in interval caching
with multicast group popularity<Rn)
 {
 consider the least popular video
 Ri of a multicast group
 if(popularity of Rn>popularity of
 Ri)
 {
 free except minblks from the
 request Ri
 add these blocks to Rn
 }
 }
 if(Rn does not get the required no. of
 cache blocks based on popularity)
 {

 Identify the set of request{Ri} in interval
caching in a multicast group which are being streamed and
having more than Min no. of blocks
 If (found)
 {
 While(cache blocks not
 completely allocated to Rn &&
 still there are some videos
 with popularity<Rn)
 {
 consider the least popular
 video Ri
 If(popularity of
 Rn>popularity of Ri)
 {
 free except minblks from
 the request Ri
 add these blocks to Rn
 }
 }
 }
 else
 if (Rn gets at least min no. of
 blocks)
 {
 assign the allocated no. of
 blocks to Rn .
 }
 else
 {
 Reject the request.
 }

 }
 }

7. Results and Discussion
 In any distributed VoD system, each node can serve a
large number of homes (nearly 20,000). A hub may also
exist beyond a node which is connected via a fibre which
in turn can serve nearly 750 homes. An HFC network
typically has a total spectrum of 750MHz. This in turn is
divided into individual analogue channel of 8MHz each.
These channels are used for services such as high speed
internet and pay TV. If a VoD service is deployed on an
HFC (Hybrid Fibre Co-axial) network a fixed number of
analogue channels are assigned for use. Using QAM-
64(Quadrature Amplitude Modulation) one 8MHz can
transmit approximately 38Mbps. If the video content is
encoded at 3.5Mbps (most commercial VoD systems use
video content at this rate), then one analogue QAM
channel can support approximately 10 digital video
streams concurrently. Therefore if 4 QAM channels are
assigned for VoD, then a maximum of 40 requests can be

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 2, January 2010
www.IJCSI.org

47

served at each node at any given time during peak period.
Hence it is required to utilize a maximum limit of
concurrent request capacity of any node to increase its
efficiency.
This is a model taken for and appropriate values can be
selected for any system depending on current technology
and capital investment.
The results presented below are an average of several
simulations conducted on the model. The values
considered for simulation are as follows: Size of one cache
block = 1MB, Total cache blocks considered in the proxy
server = 1500, Size of the videos = U (300MB, 500MB),
Minimum numbers blocks allocated to a video = 30MB,
each simulation is carried out for 1500 seconds. Our
simulation model consists of a central server with 100
complete movies stored in it. A cache has the space to
hold 10 movies. 50% of the cache is used to store only the
prefix and remaining holds the later parts of the movie
being streamed the central content server is connected to
the proxy servers with high speed networks (ATM).Total
start up latency of the hard disk is approximately 6 ms.
Mean number of blocks per video is 200MB, mean inter
arrival time is 60 s. Maximum hard disk bandwidth
10Mbytes/sec.

 Figure 4 Buffer utilization

Figure 4 describes the how storing the prefix of the stream
can improve the delivery of continuous media and
increases the buffer utilization. Buffer utilization can be
100% when most of the popular videos get at most
minimum blocks of cache.

 Figure 5. Hit Ratio of the Videos

Figure 5 shows that hit ratio of videos are increased in
dynamic buffer allocation since more number of most
popular video is stored in the cache .

 Figure 6. Total Videos buffered

Figure 6 show that existing static buffer allocation scheme
determines the buffer size assuming the fully loaded system
state. Thus, the static scheme allocates an unnecessarily large
buffer when the system is not in the fully loaded state. In
contrast, the dynamic buffer allocation scheme allocates the
minimum buffer size in a partially loaded state, as well as in
the fully loaded state. Hence increases the number of prefix
that can be stored as compared with static buffer allocation.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 2, January 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

48

Concurrent Users being Serviced

0

50

100

150

200

250

300

1 8 13 21 27 31 39 45 49 53 57 62 68 76 82 86 92 100 106 112 119 131 138 146 147 159 160 170 171 190 214 215 244 249 261 262 277 278
Time

N
um

be
r O

f C
on

cu
rr

en
t U

se
rs

Multicast prefix Interval
Caching
Unicast tranmission

 Figure 7: Total number of concurrent users
Figure 7 shows; the maximum number of concurrent users
in unicast transmission is limited to 40. Multicast enables
hundreds users to play a single stream, provided the
streaming server work on networks with Multicast-enabled
routers.

8. Conclusion and Future work
In this paper we have shown that by storing only the prefix
of most popular video in the cache and batching all the
requests with the time interval of deadline of first request
and then multicasting the video to all the requested clients
we provide admission for more clients. Our work is
compared with the static buffer allocation for the prefix.
With dynamic allocation of buffer based on popularity fix
we not only get more number of videos being streamed but
also reduction in the rejection ratio. The request to service
time is also reduced. As the number of most popular
videos stored in the cache increases, the ratio also
increases. The future work can be carried out for a further
improved replacement technique to increase the hit ratio
using bandwidth to space ratio.

References
[1] Nachum Shacham, Fellow, IEEE, and [5] Johannes Dengler,
Christoph Bernhardt “Deterministic admission control strategies in video
servers with variable bit rate streams Interactive Distributed Multimedia
systems and Services” Volume 1045/1996 245-264.
[2] Ohhoon Kwon Hyokyung Bahn Kern Koh “Popularity and Prefix
Aware Interval Caching for Multimedia Streaming Servers” Computer and
Information Technology, 2008. CIT 2008. 8th IEEE International
Conference 8-11july2008On page(s): 555-560 243.
[3] A. Dan and D. Sitaram, “A Generalized Interval CachingPolicy for
Mixed Interactive and Long Video Environments,” SPIE Multimedia
Computing and Networking Conf., San Jose, CA, 1996.
[4] C.C. Aggarwal, J.L. Wolf, The maximum factor queue length batching
scheme for video-on-demand systems, IEEE Tran. Comput. 50 (2) (February
2001) 97–110.
 [5] Ming-Hour Yang, Chi-He Chang, and Yu-Chee Tseng “A Borrow-
and-Return Model to Reduce Clientaiting Time for Broadcasting-Based
VOD Services” IEEE transactions on broadcasting, vol. 49, no. 2, june
2003
 [6] Cyrus C. Y. Choi and Mounir Hamdi, Member, IEEE “A Scalable
Video-On-Demand System UsingMulti-Batch Buffering Techniques” IEEE
transactions on broadcasting, vol. 49, no. 2, june 2003

[7] Sang-Ho Lee, Member, IEEE, Kyu-Young Whang, Senior Member,
IEEE, Yang-Sae Moon, Member, IEEE, Wook-Shin Han, Member, IEEE,
and Il-Yeol Song, Member, IEEE Computer Society “Dynamic Buffer
Allocation in Video-on-Demand Systems” IEEE transactions on knowledge
and data engineering, vol.15, no. 6, November/December 2003 1535
[8] Kun Fu and Roger Zimmermann “Memory Management for Large Scale
Data Stream Recorders” Springer Netherlands 2006 ISBN 978-1-4020-
3674-3 (Print) 978-1-4020-3675-0 (Online)
[9] J.K. Dey-Sircar, J.D. Salehi, J.F. Kurose, and D. Towsley, “Providing
Vcr Capabilities in Large-Scale Video Servers,” Proc. Second ACM Int’l
Conf. Multimedia, pp. 25-32, 1994.
[10] S.-H. Lee, K.-Y. Whang, Y.-S. Moon, and I.-Y. Song, “Dybase: A
Buffer Allocation Scheme for Reducing Average Initial Latency in Video-
on-Demand Systems,” Information Sciences, vol. 137, nos. 1-4, pp. 17-31,
2001.
[11]H S Guruprasad M Dakshayini P Jayarekha H DMaheshappa P
Geethavani”Dynamic Buffer Allocation forVOD system Based On
Popularity” PSG Tech Coimbatore2006.
[12] Huadong Ma,Kang G Shin, “Multicast Video-on-Demand Services”,
ACM SIGCOMM Computer Communication Review, Volume 32, issue 1,
January 2002 pp 31-43, ISSN:0 146-4833.
[13] S. Ramesh, I. Rhee, and K. Guo, “Multicast with
cache(mcache): An adaptive zero-delay video-on-demand service,”
in Proc. IEEE INFOCOM, April 2001.
[14] Rami Lehtonen Harju, J. Controlled multicast framework Local
Computer Networks, 2002. Proceedings. LCN 2002. 27th Annual IEEE
Conference
[15] P Jayarekha Dr.T.R.GopalaKrishnan nair “Multicast transmission
Prefix and Popularity aware interval caching based admission control
policy” Frontiers of Multidisciplinary Research- Volume I. Innovations
2008- Doctoral Symposium held at DSI Bangalore

 P Jayarekha holds M.Tech (VTU Belgaum) in computer
science securing second rank. She has one and a
half decades experience in teaching field. She has
published many papers. Currently she is working as a
teaching faculty in the department of Information science
and engineering at BMS College Of Engineering,
Bangalore, India.

T.R. Gopalakrishnan Nair holds M.Tech. (IISc,
Bangalore) and Ph.D. degree in Computer Science. He has
3 decades experience in Computer Science and
Engineering through research, industry and education. He
has published several papers and holds patents in multi
domains. He won the PARAM Award for technology
innovation. Currently he is the Director of Research and
Industry in Dayananda Sagar Institutions, Bangalore,
India.

http://www.springerlink.com/content/u8n85276025v/?p=05dcb9915f0f4e92bd95e11765b64d86&pi=0
http://www.springerlink.com/content/u8n85276025v/?p=05dcb9915f0f4e92bd95e11765b64d86&pi=0
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(ohhoon%20kwon%3cIN%3eau)&valnm=Ohhoon+Kwon&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20hyokyung%20bahn%3cIN%3eau)&valnm=+Hyokyung+Bahn&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20kern%20koh%3cIN%3eau)&valnm=+Kern+Koh&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4586225
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4586225
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4586225
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20harju%20%20j.%3cIN%3eau)&valnm=+Harju%2C+J.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8410
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8410
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8410

	2. Related Work
	4. Dynamic buffer allocation
	5. The Architecture of Multicast VoD System
	6. Multicast and Interval Caching
	7. Results and Discussion
	8. Conclusion and Future work

