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Abstract
The complexity of multimedia applications in terms of intensity
of computation and heterogeneity of treated data led the
designers to embark them on multiprocessor systems on chip.
The complexity of these systems on one hand and the
expectations of the consumers on the other hand complicate the
designers job to conceive and supply strong and successful
systems in the shortest deadlines. They have to explore the
different solutions of the design space and estimate their
performances in order to deduce the solution that respects their
design constraints. In this context, we propose the modeling of
one of the design space possible solutions: the software to
hardware task migration. This modeling exploits the
synchronous dataflow graphs to take into account the different
migration impacts and estimate their performances in terms of
throughput.
Keywords: Multiprocessor systems on chip, Synchronous
dataflow, Performance estimation, Software to hardware task
migration.

1. Introduction

The enhancement of multimedia applications reaches its
culminating point because of the growing consumers
needs in all domestic and professional audio video
domains. To answer these needs more and more rigid,
the embedded systems rapidly evolve towards
multiprocessor systems on chip (MPSoCs) particularly
those based on networks on chip (NoCs) as
communication architecture. The number of processors
per chip, the diversity of their types as well as their
communications complicate the MPSoCs design; without
forgetting the multimedia applications complexity in
terms of computation intensity and data abundance and
heterogeneity. So, the principal challenge of designers is
to face this NoC-based MPSoC design complexity and
provide robust systems in the shortest delays. To deal
with these conflicting design challenges, designers have
to estimate principal characteristics of the final system
early in the design process of MPSoCs; which results in
a final implementation where productivity and quality
are simultaneously guaranteed.

Designers must control the ever growing MPSoC Design
Space Exploration (DSE) where different choices are
investigated in order to determine the appropriate choice
that leads to a fair compromise between the different
conflicting design objectives. Typically, the performance
estimation is an important part of the DSE. Different
choices of the application parallelization, the target
platform and the mapping of the application onto the
platform need to be estimated in terms of different
quality criteria. If the constraints (energy consumption,
throughput, etc.) drawn by the designers are not
achieved, modifications should be brought to the
application decomposition and/or the platform and/or the
proposed mapping in order to find an MPSoC
configuration that meets the designers constraints.

In recognition of the growing need to the MPSoC
performance estimation, different approaches aim at
estimating the overall system performance. In [1], three
approaches are defined. First, the simulation-based
approach is based on an evaluation of the system
behavior by means of simulation (native execution,
Instruction Set Simulator, etc.) in different abstraction
levels. Kai Huang and al [2] exploits the Simulink
platform to simulate the multimedia applications on
different hardware platforms. The H.264 decoder is used
as a case study to validate this work. Its simulation on
different platforms (change of the processors type and
number) estimates the number of consumed cycles per
processor for execution and communication. In the same
way, Teresa Medina Leon [3] proposes the MJPEG
decoder simulation on the MiniNoC platform to estimate
the time required for a frame decoding. The MiniNoC
platform, implemented in C++, simulates in the register
transfer level a platform composed of four mini MIPS
processors displayed in four nodes that communicate
with each other via a mini NoC composed of four
routers. Second, the trace based approach consists in
collecting the application execution traces. Designers
operate a single simulation at the beginning of the design
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phase from which they extract traces of the application
execution on the target platform. These traces can be, for
instance, the size of the transferred data on the
communication platform, the number of transactions
between every pair of tasks, the execution times of
different tasks, etc. The collected traces are organized in
the form of a Communication Analysis Graph (CAG).
The CAG analysis allows the designers to produce
several statistics about the system performances. The
trace based approach is generally used when the initial
simulation is difficult to reproduce. This approach was
exploited in [4] to lead to the optimal communication
mapping on a predefined target architecture assuming
that the application is already partitioned and mapped.
Traces collected in this work serve at calculating, for
every edge of the CAG, a weight that reflects the
frequency, the volume and the criticism of transactions
between every communicating unity. Finally, the static
approach that tries to avoid the computationally
prohibitive and exhaustive simulation, makes use of
“static” models such as graphs, mathematical equations,
UML components [5] and XML tags to estimate the
MPSoCs performances.

In this paper, we opt for static approach using exactly the
Synchronous DataFlow Graphs (SDFGs) to model
applications as well as their mapping on target platforms.
SDFGs are extremely used for MPSoCs performance
estimation since they fit well with the characteristics of
streaming multimedia applications. Moreover, they can
model many mapping decisions of an application on
NoC-based MPSoC adding new actors and edges to the
initial SDFG of the application. Among the several
design flows [6] [7] [8] that make use of SDFGs as a
model of computation, we focus in this paper on the
predictable design flow established by Sander Stuijk [9].
These design flows do not model the migration of the
application software tasks to hardware ones. They just
assume that executing tasks on hardware blocks requires
half the number of cycles as executing them on general
purpose processors.

So, the principal motivation that governs this work is the
consideration of one of these DSE alternatives: the
software to hardware task migration. The migration
performance estimation refines the choice of the optimal
solution from the design space. It is a solution adopted to
face part of the design problems; using a hardware block
instead of a software task running on a general-purpose
microprocessor which is not fast enough to achieve
design goals. If the migration solution of a given task
respects the constraints fixed by the designers, this
solution will be adopted, otherwise the migration of other
tasks can be performed to satisfy the design constraints.
In this context, we begin by defining the impacts that are
caused by the migration of a software task to a hardware
one. Second, we opt to model these impacts using SDFG.
The latter takes charge of application modeling in the
form of graphs from which designers can estimate the
application throughput.

The paper is organized as follows. The next section
introduces the MPSoCs performance estimation using
SDFGs. Section 3 details the software to hardware task
migration impacts as well as their SDFG modeling. The
case study of the MJPEG decoder is given in Section 4.
Conclusions and perspectives are drawn in Section 5.

2. MPSoC performance estimation by
SDFGs
Seeing that this paper focuses on the MPSoCs
performance estimation using SDFGs, we will first
introduce the MPSoCs as well as their architecture and
provide an overview of the most important SDFGs
properties. Then, the predictable design flow will be
presented as a flow case that uses SDFGs to estimate the
performance of multimedia applications, mapped on
MPSoCs, in terms of throughput.

2.1 Multiprocessor systems on chip architecture

The increasing and exponential complexity of
multimedia applications has widely promoted the use of
SoCs composed of several processors. The processors
number and diversity per chip require a powerful
communication infrastructure that supports numerous
transactions between processors. Therefore, bus based
SoCs have rapidly induced bottlenecks and led to the
NoC emergence for their flexibility and scalability. The
NoC based MPSoC architecture is composed of a set of
tiles connected via the NoC. Every tile is formed by a
processor (P), a local memory (M), a network interface
(NI) that connects tiles to the NoC and a communication
assist (CA). The latter is responsible for the data transfer
between the local memory of the tile and the network
interface.

The NoC is a set of routers connected to each other by
links according to a determined topology. Routers are
referenced by two addresses X and Y reflecting their
respective positions in two dimensions width and length.
In addition, every router is connected to its immediate
neighbors in the two dimensions X and Y.

Fig. 1 NoC based MPSoC architecture
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2.2 Synchronous dataflow graphs

SDFG, proposed by Lee and Messerschmitt [10], is a
model of computation used to model multiprocessor
applications and analyze their temporal behavior during
design phase. Fig. 2 illustrates a simple SDFG example
formed by two actors A and B. Each actor presents an
application task having a given execution time. Edges
between A and B model data communicated between
each other. We have to mention that the self-edge of
actor B as well its initial token allow the control of the
actor internal state. It assures that actor B can only begin
its next execution when it finishes its current one. In
SDFGs, data are communicated in the form of tokens
which is a data container where a fixed amount of data
can be saved. For instance, edge from B to A contains 2
initial tokens used to launch the SDFG execution.

Fig. 2 SDFG example

Numbers in the extremities of the arcs, named rates,
designate the number of tokens consumed and produced
by an actor during its firing. In the SDFG example of
Fig. 2, actor A consumes 1 token and produces 2 tokens
whereas actor B consumes 1 token and produces 3
tokens. Since default rates are equal to 1, rates “1” can be
not mentioned in the SDFG to avoid the graph
obstruction.

A fundamental property of SDFGs is that every time an
actor fires it consumes the same amount of tokens from
its input ports and produces the same amount of tokens
on its output ports. In addition, an actor can only begin
its execution when tokens necessary for its firing are
available in all its input edges. Actor A of the SDFG
example fires as soon as at least 1 token is available in its
incoming edge (edge from B to A).

SDFGs are widely exploited to derive the applications
throughput using analytical methods. SDFG throughput
is formally defined as the average number of the SDFG
iterations per time unit. Literature evokes two equivalent
methods of SDFG throughput computation: Maximal
Cycle Mean [11] and self-timed execution [9] methods.

2.3 Case of predictable design flow

The predictable design flow [9] enables designers to map
an application SDFG on NoC based MPSoC platform
while respecting a throughput constraint and minimizing
the platform resources usage in terms of processors,
memories and bandwidths. The flow takes as entrance
the application SDFG, the throughput constraint fixed by
the designer and the target platform. It generates an

MPSoC configuration which proposes the mapping of
the application SDFG actors on the target platform as
well as the scheduling of their communications. The
open source tool SDF3 [12] is the implementation of the
predictable design flow. It also implements algorithms
for the SDFGs generation, visualization, transformation
and analysis.

The predictable design flow consists of four phases. The
« memory dimensioning » phase takes an interest in
memory allocations of all edges in the application SDFG.
The second phase « constraint refinement » specifies the
constraints that edges must respect in terms of latency
and bandwidth. « Tile binding and scheduling » phase
proposes the mapping and scheduling of all actors in the
application SDFG on the target platform tiles while
respecting the throughput constraint. The last phase «
NoC routing and scheduling » takes charge of
communications mapping and scheduling on the
platform NoC. Each phase produces a SDFG that models
phase decisions adding new actors and edges to the
initial application SDFG. We detail the memory-aware
and the binding-aware SDFGs generated respectively by
the first and third phase.

The memory-aware SDFG models the memory
allocations made by the first phase of the flow. Actors of
which tokens size exceeds the storage capacity of tiles
local memories will be stored in shared memory tiles.
During its firing, actor B of Fig. 3a consumes i tokens
and produces o tokens. Consumed tokens have a large
size and must be stored in a remote memory. So, actor B
must operate remote accesses to bring these tokens in
case of need. These remote accesses to the remote
memory are modeled as shown in the SDFG of Fig. 3b.

(a) Actor B before memory allocation

(b) Actor B after memory allocation

Fig. 3 Memory-aware SDFG [9]

Actor B is henceforth modeled by two actors B1 and B2.
The remote memory is modeled by two actors m1 and
m2. While actor B2 operates its (i)th execution, actors B1
and m1 pre-fetch data necessary for the (i+1)th execution
of actor B2 from the remote memory. Actors B2 and m2
are in charge of actor B execution. They also fetch data
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from the remote memory when the pre-fetch phase
cannot look for all data necessary for the (i+1)th

execution of actor B2. Actors Ai and Ao as well as their
cycles with actors m1 and B2 reserve respectively the
input and output behavior of actor B. As for number n, it
represents the number of times actor B fires. When n
tokens are available in the entrance of actor Ai, it fires.
Its execution produces n successive executions of actors
B1, B2, m1 and m2. These n executions provide n tokens
in the entrance of actor Ao what induces its firing. The
Ao execution allows then next n successive executions of
actors B1, B2, m1 and m2.

The binding-aware SDFG models mapping decisions of
the predictable design flow third phase. Edges whose
source and destination actors A and B are mapped to the
same tile are modeled with a back-edge from A to B. As
shown in Fig. 4a, the back-edge has αtile-n initial tokens
which present the remaining free memory space for the
communication between A and B. We notice that αtile,
αsrc and αdst parameters are computed by the first phase of
the flow. αtile designates the memory, in tokens, required
for the communication between A and B when they are
mapped to the same tile. αsrc and αdst designate the
memory required respectively in source and destination
tiles when A and B are mapped to different tiles.

(a) Actors A and B mapped on the same tile

(b) Actors A and B mapped on different tiles

Fig. 4  Binding-aware SDFG [9]

Edges of which the source and destination actors A and
B are mapped to different tiles are bound to a connection
of the platform NoC as shown in the Fig. 4b. The
remaining free memory spaces for the communication
between A and B in the source and destination tiles are
respectively modeled by the back-edges from ac to A and
from B to ac. Actor ac models the sending latency of a
token via the connection. Actor aρ presents the minimal
latency, calculated by the second phase of the flow,
between the production and the consumption of a token
communicated between A and B over the connection.

Actor as considers the worst case where a token
necessary for the execution of actor B arrives at the end
of its TDMA time slot. Therefore, actor as models the
time that actor B has to wait to reach its next TDMA slot
and consume its token.

3. Software to hardware task migration

3.1 Migration impacts

Software to hardware task migration must be considered
in the precocious design steps to estimate its gain
compared to a pure software application. According to
this gain, designers will take the decision for or against
the hardware implementation of one or several tasks of
the application.

• Impact 1: The hardware task execution time:

The first migration impact is the remarkable decrease in
the execution time of the hardware task compared to the
software one. The hardware implementation of the
migrated task will be executed on special purpose
hardware and integrated circuits to perform the task
function; what causes a significant reduction on its
execution time when compared to its execution on a
general purpose processor. Executing tasks on hardware
blocks may require less than half the number of cycles as
executing them on processors.

• Impact 2: The migrated task workload:

This impact draws attention to the workload of the
software task that disappears once it is executed
separately on a hardware block. To clarify the idea, we
will consider a simple example of two tasks T1 and T2
executed on the same processor with a TDMA period of
100 time units. Before migration, T1 has 30% of the total
TDMA period and T2 takes the remaining 70% for its
execution. If we consider the worst case in which a token
needed to fire task T1 arrives exactly at the end of its
time slice, it has to wait the time slice of T2 (70 time
units) before it can fire. After migrating T2 from
software to hardware, T1 will be the only task executed
on the processor and the whole TDMA wheel size of the
processor will be at its disposal. Therefore, T1 has no
longer to wait the time slice allocated to T2 which
speeds-up its firing and obviously its throughput.

• Impact 3: The migrated task communication:

One of the important aspects that must be considered in
the software to hardware task migration is the type of
communication that will be used to transfer data from
software tasks to hardware blocks and vice versa. Since
we work at the system level, we will not consider the
communication details such as data synchronization,
wrappers to integrate the hardware blocks, etc. Different
types of Software/Hardware (SH), Hardware/Software
(HS) and Hardware/Hardware (HH) communications can
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be distinguished. In this work, we will focus on three
communication types that we have named SH1, HS1 and
HH1.

Table 1: SH1, HS1 and HH1 communications

Description Architecture

SH1

The software task
executed on a general-
purpose processor sends
its output data to the
buffer of the hardware
block.

HS1

The software task
executed on a general-
purpose processor reads
its input data from the
buffer of the hardware
block.

HH1

The producing hardware
block sends its output
data to the buffer of the
consuming hardware
block.

• Impact 4: The communication overhead:

This impact is the direct result of the hardware task
communication with other software and hardware tasks.
It depends on the initial mapping of the migrated task
before the migration, the mapping of its communicating
tasks and the sense of the communication. Therefore,
every communication type will be treated apart.

To explicit the case of the SH1 communication overhead,
we will first consider the example of two software tasks
T1 and T2 mapped on the same tile. Hence, T1 and T2
communicate locally in the memory of the tile and do not
need to transfer data via the NoC. If we decide the task
T2 migration, tasks T1 and T2 are no more mapped on
the same tile and have henceforth to send their
communicated data via the NoC. The usage of the NoC
leads to an additional load that does not exist before T2
migration.

(a) Before migration of T2

(b) After migration of T2

Fig. 5 SH1 communication with T1 and T2 in the same tile before
migration

If we consider that, before migration, tasks T1 and T2
are mapped in different tiles. The migration of task T2
will not cause a communication overhead since tasks T1
and T2 already communicate via the NoC before the
migration occurs.

(a) Before migration of T2

(b) After migration of T2

Fig. 6 SH1 communication with T1 and T2 in different tiles before
migration

As already seen in the SH1 communication, the
migration of task T2 produces a communication
overhead if the initial software tasks T1 and T2 are
mapped to the same tile before the migration. If tasks T1
and T2 are bound to different tiles before the migration
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occurs, a communication overhead takes place. In fact, in
the case of the HS1 communication type, the hardware
block does not send data to the consuming software task.
The hardware task saves its output data in its local
memory (1); then the software task must read (2) and
bring the data necessary for its firing from the memory
of the hardware block (3) as shown in Fig. 7. Therefore,
these remote accesses create an extra load of
communication via the NoC.

(a) Before migration of T2

(b) After migration of T2

Fig. 7 HS1 communication with T1 and T2 in different tiles before
migration

In the ultimate case, the HH communication overhead,
we treat the case of a software task T2 that
communicates with a hardware task T1. The migration of
task T2 does not engender any extra communication load
since T1 and T2 communicate via the NoC before the
migration occurs. As shown in Fig. 8, task T2, before
migration, sends its data via the NoC to the memory of
the hardware block. After the migration takes place, task
T2 still sends its output to the hardware block memory.

(a) Before migration of T2

(b) After migration of T2

Fig. 8  HH1 communication

3.2 Migration modeling

We will eventually make use of the predictable design
flow transformations; so as to have a system-level model
that considers all the migration impacts. We have to
notice that the communication overhead impact is the
direct result of the used communication type. So, the
modeling of the migrated task communication impact
(impact 3) includes the modeling of the communication
overhead impact (impact 4).

• Impact 1 Modeling: Concerning the first migration
impact, we can act on the execution times of actors that
model the hardware tasks in the SDFG. The execution
times of actors that model the migrated tasks will be
reduced compared to their execution times before
migration.

• Impact 2 Modeling: In [13], TDMA time slice
allocations are modeled by increasing the execution time
of every actor firing with the fraction of the TDMA time
which is reserved by other actors. It means that the worst
case is considered; that is why the firing of a given actor
is usually postponed by the TDMA time allocated to
other actors. Since the migrated task workload will
disappear after migration, we will not consider its
TDMA time in the execution time of the software task
that was executed on the same processor on which the
migrated task was also executed.
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• Impact 3 Modeling: The binding-aware SDFG, used by
the third phase of the predictable design flow to model
the SS communication, can be used to model the SH1
and the HH1 communications. In fact, SS, SH1 and HH1
communications use the same principle to transfer data
via the NoC:
o In the SS communication, the software task T1

sends data to the local memory of the tile on which
software task T2 is mapped.

o In the SH1 communication, the software task T1
sends data to the local memory of the hardware
task T2.

o In the HH1 communication, the hardware task T1
sends data to the local memory of the hardware
task T2.

As we can notice, in these three types of communication,
data are usually transferred from the producing task T1
to the local memory of the consuming task T2. The
difference consists in the extremities of the
communication either they are software or hardware.
Therefore, the SH1 and HH1 communications can be
modeled by the same SDFG shown in Fig. 4b.

As explained in Table 1, during an HS1 communication,
the hardware task stores its output in its local memory;
then the consuming software task operates remote
accesses to the memory of the hardware block to fetch
data necessary for its firing. This communication type
has the same principle of tasks that do not have enough
space in their tiles to store their data. So, they have to
store their data in a shared memory; then they will bring
them in case of need. Hence, to model the HS1
communication, we propose the memory-aware SDFG
already illustrated in Fig. 3b.

4. Motion JPEG decoder case study

4.1 Motion JPEG decoder

The motion JPEG decoder is a multimedia application
whose building blocks are used in many image and video
processing algorithms. The first block VLD performs
variable length decoding. IZZ reorders the stream of
pixels coefficients according an inverse zigzag sequence.
IQ and IDCT functional blocks respectively operate the
inverse quantization and the inverse discrete cosine
transform. CC and RE are not specified in the official
MJPEG standard [14] but they are necessary to adapt the
pixel stream to output peripherals. CC allows color
conversion from the YCbCr color scheme to the RGB

one. RE reorders the pixels to rebuild the decompressed
image.

4.2 Mapped MJPEG decoder before migration

Referring to the MJPEG decoder implementation, the
resulting SDFG of the MJPEG decoder decoding video
frames of resolution 32*24 is shown in Fig. 9. Actors
IZZ, IQ, IDCT and CC operate on blocks of 8 by 8 pixels
so that a token is equivalent to a block of 8 by 8 pixels.
Actors VLD and RE operates on the whole image hence
on 12 = (32/8) * (24/8) matrices of 8 by 8 pixels.

Fig. 9 MJPEG decoder SDFG

The platform on which the MJPEG decoder will be
mapped, in this case study, is formed by three tiles T1,
T2 and T3 having each one a total TDMA wheel size of
100000 time units. Then, we assume that the VLD and
IZZ actors are mapped on the same tile T1, actors IQ and
IDCT on the tile T2 and actors CC and RE on the tile T3.
The actors execution times before the mapping (ETBM)
deduced from [3] [15], the TDMA time slices allocated
to each actor in the tile on which is mapped (TDMA) and
the resulting execution times of actors after the mapping
(ETAM) are summarized in Table 2.

Table 2: Actors mapping and TDMA allocations in the MJPEG
decoder SDFG

Tiles Tile T1 Tile T2 Tile T3

Actors VLD IZZ IQ IDCT CC RE
ETBM 2082463 24791 49582 99165 74374 892484

TDMA 50000 50000 10000 90000 20000 80000

ETAM (*) 2132463 74791 139582 109165 154374 912484

Legend :
ETBM = Execution Time Before Mapping (clk)
ETAM = Execution Time After Mapping  (clk)
(*) ETAM(actor) = ETBM(actor) + TDMA(other actors mapped on
the same tile)

To model this proposed mapping, we used the binding-
aware graph transformations already detailed above. The
resulting SDFG of the mapped MJPEG decoder is
presented in Fig. 10.
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Actor VLD IZZ IQ IDCT CC RE ac1/ac2 aρ1/aρ2 as1 as2

ET (clk) 2132463 74791 139582 109165 154374 912484 252047(*) 105(**) 90000 80000

(*) ET(ac1) = latency of the connection + [size of a communicated token/bandwidth of the connection] = L(c) + [sz/β]
                = 3 + [1024/0.00406278] = 252047 time units.

ET(ac2) = L(c) + [sz/β] = 3 + [512/0.00203139] = 252047 time units.
(**) ET(aρ1) = TE(aρ2) = latency calculated by the fifth step of the predictable design flow  = ρ = 100000 time units.

Fig. 10  Mapped MJPEG decoder before migration

After presenting the SDFG of the mapped MJPEG
decoder of Fig. 10 with the SDF3 XML format [16], we
inject the resulting XML file to the throughput
computation algorithm implemented by the SDF3 tool.
The algorithm output is a throughput equal to 13,6
frames/second (f/s). We notice that obtained throughputs
are computed for processors frequency of 100 MHz.

The most CPU greedy tasks of the MJPEG decoder are
VLD (35%) and IDCT (20%) [3]. Therefore, we will
respectively migrate the VLD and IDCT actors to
hardware blocks. Then, we will evaluate the MJPEG
decoder throughput after migration.

4.3 Mapped MJPEG decoder after VLD migration

Preserving the same mapping as before the migration, the
SDGF of Fig. 11a models the MJPEG decoder having
the VLD task migrated to a hardware block. The
modeling of the migration impacts detailed above will be
applied to this particular migration case:

• Impact 1: We assume that the execution time of the
migrated VLD will be reduced to the half of its execution

time before migration. Therefore, its execution time is
henceforth equal to 1041231 = 2082463/2.

• Impact 2: Before the migration occurs, VLD and IZZ
actors shared the processor of the tile T1. That is why
IZZ firing is postponed by the TDMA time slice
allocated to actor VLD. Once the VLD actor is migrated
to a hardware block, the IZZ actor has no longer to wait
the 50000 clock cycles reserved to VLD actor as TDMA
time slice.

• Impact 3: Since actor IZZ requires a block of 8 by 8
pixels for its (i+1)th execution, this block can be entirely
pre-fetched during its (i)th execution and the fetch
mechanism is no more needed. So, the HS1
communication between VLD and IZZ actors is modeled
by the memory-aware SDFG of Fig. 3b removing the m
actor.

The throughput of the MJPEG decoder after the
migration of the VLD actor is equal to 15.58 f/s. We
remind that this throughput is obtained using images of
32*24 resolution and processors frequency of 100 MHz.
The VLD hardware implementation allows the decoding
of 2 extra frames per second compared to the decoding
throughput before migration.
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Actor VLD IZZ2 IZZ1 IQ IDCT CC RE ac1/ac2 aρ1/aρ2 as1 as2 r1/r2 m1

ET(clk) 1041231 24791 10000 139582 109165 154374 912484 252047 105 90000 80000 1 262047(*)

(*) We suppose that the time necessary for the actor m1 to pre-fetch data in the memory of the HW block is equal to 10000 time
units. The latency required to transfer data pre-fetched from the HW block memory to the SW task that requests the data (IZZ2) is
added to the execution time of the actor m1: ET(m1)=10000 + 252047.

(a) VLD Migration

Actor VLD IZZ IQ IDCT RE CC1 CC2 ac1/ac2 aρ1/aρ2 as1 as2 r1/r2 m1

ET(clk) 2132463 74791 49582 49582 912484 104 154374 252047 105 0 0 1 262047

(b) IDCT Migration

Fig. 11 Mapped MJPEG decoder after migration

4.4 Mapped MJPEG decoder after IDCT migration

The second considered case is the migration of the IDCT
task to a hardware block. Fig. 11b presents the SDFG of
the mapped MJPEG decoder after the IDCT migration as
well as its actors execution times:

• Impact 1: The execution time of the IDCT actor after
migration is equal to 49582 clock cycles (99165/2).

• Impact 2: The execution time of the IQ actor does not
consider the 90000 TDMA time slice reserved to the
IDCT actor since the latter is executed as a separate
hardware block.

• Impact 3: The SH1 communication between the
software actor IQ and the hardware actor IDCT is
modeled by the binding-aware SDFG of Fig. 4b. The
memory-aware SDFG is employed to model the HS1
communication between IDCT and CC actors.

The MJPEG decoder throughput after IDCT migration is
equal to 17,23 f/s which mean a gain of about 4 f/s.
Table 3 summarizes the obtained throughputs before and
after migration.

Table 3: The Migration gain of the MJPEG decoder

Throughput without Migration (f/s) 13,6

     VLD       IDCT
Throughput with Migration (f/s) 15,58 17,23
Migration Gain (f/s) 1,98 3,63
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5. Conclusions and perspectives

In this paper, we have proposed a SDF model that
considers the software to hardware task migration
impacts exploiting graphs used by the predictable design
flow to model applications mapped to NoC-based
MPSoCs. The proposed model was applied to the real
multimedia application MJPEG decoder to estimate the
migration performances in terms of throughput. The
experimental results show that, using this model, the
migration of VLD and IDCT tasks of the MJPEG
decoder leads to respective throughput increases of about
2 and 4 frames per second.

The proposed migration model is particularly useful
when designers want to take decisions for or against
tasks hardware implementation during design phase.
Once programmed, our proposition allows the migration
performance estimation in clearly reduced deadlines
(seconds) compared to its performance estimation using
simulations (hours). This gain, at the level of design
time, amounts to the high level migration modeling that
we have proposed. Designers can explore several
migration cases and estimate their performances in tiny
delays to cope with the constantly increasing MPSoCs
design complexity and time-to-market pressure.

We suggest as continuation to this work the
implementation of the proposed migration model to
automate its use and facilitate its applicability. Moreover,
the migration model can be refined exploiting the
Guaranteed Throughput Channel proposed in [11].
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